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ABSTRACT

In this paper we describe the optimization of an information
theoretic criterion for radar waveform design. The method is used to
design radar waveforms suitable for simultaneously estimating and
tracking parameters of multiple targets. Our approach generalizes
the information theoretic water-filling approach of Bell. The paper
has two main contributions. First, a new information theoretic
design criterion for designing multiple waveforms under a joint
power constraint when beamforming is used both at transmitter and
receiver. Then we provide a highly efficient algorithm for optimiz-
ing the transmitted waveforms, by approximating the information
theoretic cost function. We show that using Lagrange relaxation the
optimization problem can be decoupled into a parallel set of low-
dimensional search problems at each frequency, with dimension
defined by the number of targets instead of the number of frequency
bands used.
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I. INTRODUCTION

The problem of radar waveform design is of fundamental impor-
tance in designing state-of-the-art radar systems. The possibility to
vary the transmitted signal on a pulse-by-pulse basis opens the door
to great enhancement in estimation and detection capability as well
as improved robustness to jamming. Furthermore modern radars
can detect and track multiple targets simultaneously. Therefore,
designing the transmitted pulses for estimating multiple targets
becomes a critical issue in radar waveform design.

Most of existing waveform design literature deals with designs
for a single target. One of the important tools in such designs is
the use of information theoretic techniques. The pioneering work of
Woodward and Davies [1] was the first to suggest that information
theoretic tools are important for the development of radar receivers.
Following [1] many other works were devoted to the optimization
of a single radar waveform for detecting or estimating a single
target. See [2] for a detailed review of these results.

Bell [2] was the first to propose using the mutual information
between a random extended target and the received signal. His
optimization led to a water-filling type strategy. In his paper he
assumed that the radar signature is a realization of random Gaussian
process with a known power spectral density (PSD). However,
when considering real-time signal design we can use his approach
to enhance the next transmitted waveform based on the a priori
known signature. It is interesting to note that Bell’s formulation
is equivalent to the design of the best communication channel
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intended to deliver a specific Gaussian random signal (under power
constraint on the channel response).

Whereas the waveform design literature concentrated on the
estimation of a single target, modern radars treat multiple targets.
Therefore, the development of design techniques for multiple
targets is of critical importance to modern radar waveform design.

Recently a great interest has emerged in MIMO radars, where
multiple transmit and receive antennas are used with large spatial
aperture to overcome target fading (see [3], [4] for many references
to the work on MIMO radar including the work of Fuhrmann
and the MIT Lincoln lab). However, much less has been done on
MIMO waveform design. The only works on waveform design in
the MIMO context are by Yang and Blum ([4] and the references
therein) and De Maio and Lops [5]. In that work Yang and Blum
applied MIMO point-to-point communication theory to design radar
waveforms by water-filling the power over the spatial modes of the
overall radar scene (channel). They also showed that optimizing
the non-causal MMSE and optimizing the mutual information leads
to identical results. This finding provides another justification for
using the maximum mutual information criterion for the radar
waveform design problem. Their work is a novel extension of
the work of [2]. However, one should note that by water-filling
with respect to the spatial modes, higher power is allocated to the
stronger targets. This result is not always desirable, especially in
tracking scenarios.

The approach proposed in this paper overcomes this problem,
by using the insights provided by multi-user information theory [6]
instead of the point-to-point MIMO approach. The various targets
are treated as independent signals that need to be estimated, and
in the optimization process we provide priorities through a set of
priority vectors. A linear combination of the mutual information
between each radar beam and its respective target is optimized. This
leads to a highly complicated optimization problem strongly related
to the interference channel rate region [6]. However, by assuming
linear pre- and post-processing and an independent estimation of
the targets, we are able to reduce the waveform design problem
to a problem similar to that of the centralized dynamic spectrum
allocation in communication. Furthermore, recent advances in op-
timization (see [7] and the references therein, [8]) open the way
to design techniques specifically tailored for radar waveforms that
would be suitable for estimating the parameters of multiple targets.

In this paper we study the problem of radar waveform design
for multiple target estimation and tracking based on information
theoretic criteria. We treat both the case of a single waveform
design and the MIMO case where multiple waveforms should be
designed. Our main focus is on adaptive pulse-to-pulse design,
where each waveform is designed based on prior information of
the target signatures as well as the beamformers design.

The paper has two main contributions: First we extend Bell’s
results to the design of multiple waveforms for simultaneous
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estimation and tracking of multiple targets, where the transmitter
employs beamforming as well as the receiver. Then, optimization
algorithm is proposed. We show that using duality theory the
problem can be reduced to a search over a single parameter and
parallel low-dimensional optimization problems at each frequency.
Interestingly, even though the proposed design criteria for multiple
waveforms are non-convex, strong duality [7] still holds asymptot-
ically in the number of frequency bins, which allows us to solve
the simpler dual problem. Still we should note that the solution is
only approximate since for each fixed number of frequencies the
problem is NP-hard [9]

II. INFORMATION THEORETIC APPROACH TO
WAVEFORM DESIGN

In this section we extend the waveform design paradigm of
Bell [2] to the case of multiple radar transmitters and receivers.
The section is divided into three parts: after a brief review of the
result of [2] we analyze the case of single waveform design for
spatially resolved targets. This is interesting when the transmitter
is simple, e.g., in bi-static radar situations. We end up with
generalization of our approach to the case of multiple transmit
waveforms, each optimized for a specific target. In order to study
the trade-off between various radar receivers, we use a linear convex
combination of the mutual information between the targets and the
received signal at each receiver beam oriented at that specific target.

We begin with a brief overview of Bell’s information theoretic
approach to the waveform design problem. In this paper we limit
ourselves to the case of estimation waveforms for extended targets
as described in [2]. We assume that the targets are acting on the
transmitted waveform as a random, linear, time-invariant system
with discrete-time frequency response taken from a Gaussian en-
semble with known PSD. Denote by h(f) = [A(f1), ..., h(fx)]"
the target’s radar signature and by o7 ( fx) its PSD at frequency fx.
A realization of the received signal is given by

(fi) = h(fi)s(fi) +w(fe) k=1,...,K )

where s(fx), w(fi) are respectively the discrete time waveform
and clutter at frequency fi, and K is the number of frequency
sub-bands. Under our assumptions and assuming complex envelope
signaling over a sufficiently narrow-band division of the transmit
bandwidth, the mutual information between the target frequency
response and the received signal at frequency fi is given by

i (fu)ls(fx)?

3 (2)
Ow (fk)

where o2 (fx) is the clutter PSD at frequency fi, and Af is the

bandwidth used. The total mutual information between the target
frequency response and the received signal is now given by

K 2
I(hxls) = AF S log (1 1 Gl ) B
= i (fe)
Bell [2] proved that a water-filling strategy is required to maximize
the mutual information, where the transmit PSD is given by

L (h(fi); 2(fi)|s(fi) = Af log (1 +

|s(fk)|2:max{0 A—M} )
i (fr)

and A is a constant chosen so that the total power constraint is

met. It is interesting to note that unlike the usual communication

problem, the waveform design is similar to the optimization of a

communication channel for a given signal family rather than the

optimization of the signal to achieve capacity.

Bell’s approach can now be extended to the design of multiple
waveforms suitable for simultaneously estimating multiple targets
under a joint total power constraint. Previous work on MIMO radar
waveform design [4] put all targets into one large channel matrix,

similar to the point-to-point MIMO model. Therefore, it leads to
water-filling over the eigen modes of the spatio-temporal channel
matrix. This results in emphasis of strong targets. In contrast, we
allow for prioritization of targets according to an external design
vector « that weighs the various target cost functions. This method
generalizes [4], since we are able to allocate more power to targets
of interest, even if they are observed only through weak modes of
the total channel matrix. Intuitively one can think of our approach
as a rate region corresponding to rates of information we observe
on various targets. We limit ourselves to linear transmit-receive
beamforming, since the common practice in phased-array radars
is to perform linear processing. Furthermore, the complete rate
region of interference channels is unknown even in the Gaussian
noise case. However, since targets are modeled as Gaussian random
vectors in this case, we can show that we can approximate the
intractable optimization problem by a separable dual optimization
problem with a single Lagrange multiplier.

We begin by revising the received signal model. Assume that an
array with p elements simultaneously transmits L waveforms. The
transmitted signal at frequency fj is given by

= Z ue(fr)se(fr), k=1,..K 5)

=1

where ug(fr) are the beamformer coefficients for the £’th wave-
form designed for the ¢’th target at frequency fi, and s¢(k) is
the corresponding waveform at frequency fi. We assume channel
reciprocity; i.e., if the receive steering vector is a(6, fx), then the
transmitted signal arrives at the target with channels a* (0, fx).
The signal reflected from the ¢’th target having signature h, =
(he(fr),k =1,..., K) is therefore given by

Yeo(fe) = Y (@ (Oc, fi)um(fe)) he(fu)sm(fr) — (6)

m=1

for k = 1,..., K (note that we have used index m to enumerate
the transmitted waveforms, m = 1,..., L, since £ is reserved for
the target). Hence, the received signal at the array is given by

L
x(fr) = Y RUfe)um(fe)sm(fi) + v(fi), (M
m=1

where R(f) = 3.7, Re(fx). and

Re(fr) = he(fr)a(be, fr)a" (Oe, fr)- (8)

Assume that a beamformer w(f%) is used to receive the ¢’th

target, resulting in
z(fr) = wilfu)Xyes (fk)um(fk)sm(fk)+V2(fk)(9)

where v;(fi) = wi(fr)v(fi) is the received noise and clutter
component of the ¢’th beam. Let o ,(fk) = Elv(fs)|?Af

be the ¢’th beam noise power at frequency fr. After algebraic
manipulations we can show that the mutual information between
the £’th beam and the £’th target at frequency fi is now given by

t 2
— |ZZ2(f k) | 5 A f
2 (o) 2 + 02, ()
‘ (10)
where the signal reflected from the ¢’th target is denoted by

Iy, (he(fr), ze(fr)) = log <1 +

L
= > wilfo)Re(fi)wm(fr)sm(fi)- (11)
m=1
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while the noise and inter-target interference component at the £’th
beam is given by

2 (fe) =D > Wil R (fe)um (i) sm (fi) +vi(fr)- (12)

n#l m=1

We assume that the radar allocates one beam towards each target,
since non-linear joint processing of all the beams would lead to an
infeasible receiver. Therefore, the total mutual information between
the £’th beam and the ¢’th target is given by:

I(heizels) =) In (he(fu); ze(fi)ls(fi)) A (13)

where  zg = (ze(fr) :k=1,..,K) and hy =
(he(fx) :k=1,..,K) are the received signals using the
0’th received beam and the ¢’th target signature, respectively.
Sm = [sm(f1), ., sm(fx)]" are the signal waveform samples
directed towards the m’th target,

S = [Sl, .,.,SL}

is the complete spatio-temporal waveform matrix, and s = vec(S).
Assuming that the beamforming vectors are known the multiple
waveform design problem is now given by

maxs 25:1 ael (he; zels)
subject to Zle Zkkzl I5¢.k]” < Paaxs

where & = [a1, ..., L]T is the target priority vector. This problem
is highly non-linear in the complex waveforms S. Furthermore, it
involves cross-correlations between the waveforms, and therefore
phase information plays an important role. Hence we need to
design not only the waveform spectrum, but the complete complex
envelope. The dependence on the phase will have a secondary
drawback, since we will not be able to reduce the peak to average
of the overall transmitted waveform by properly choosing the
waveform phase. However, we will show that in the typical scenario
of multiple beams in a large phased array this problem can be
approximated by a simpler spectrum design problem.

To conclude the discussion regarding the optimization cost
function, we shall comment on the design of the beamformers
W} (fk), Wm (fi). There are two approaches to this design. The first
employs fixed transmit beams based on classical beamformers. For
large arrays typical to phased array radars, this might be sufficient
and simple to implement. The receive beams can be easily adapted
and will always use an approach similar to MVDR or GSC. The
second approach relies on ideas of adaptive transmit beams, exploit-
ing channel state information at the transmitter; i.e., knowledge
regarding the locations of the targets can be used to transmit
orthogonal beams such that only the illumination of a specific
target is received by the adaptive beamformer. This is similar to
zero-forcing precoders in MIMO wireless communication. However
because of space limitations, these issues will not be discussed
further in this paper.

(14)

III. WAVEFORM OPTIMIZATION FOR MULTIPLE
TARGETS

In this section we discuss the computational aspects of the wave-
form design problem. The optimization problem in (14) is highly
non-linear in all variables and depends also on the correlation
between the various waveforms s,,, so we cannot optimize just the
power spectral density. This would lead to a completely intractable
optimization problem. However, both transmit and receive beam-
formers are directed towards specific targets, and possibly nulling
other targets. Therefore the following approximations hold:

L

wo( fr)Re(fr)upn (fx) = we(fe)Re(fe)up(fr)  (15)

m=1

and similarly for n # ¢
L

D welfi)Ra(fi) W (f5) & we(fi)Ron (fr)ur (fi)  (16)

m=1

where 1), = Wm(fx)sm(fx). To provide more insight into (15-
16), we show that it holds in two typical cases. First, assume that
the array is sufficiently large such that p >> L. This is typical
for systems with hundreds (or thousands) of elements capable of
tracking up to several tens of targets. In this case, the energy gain in
the main beam of a classical beamformer (with proper windowing)
is much higher than the sidelobes. Furthermore, if the radar uses the
equivalent of zero-forcing beamforming in the transmit direction,
we obtain that each beam is orthogonal to the unintended targets;
i.e., umLa(fy) for m # n, and each waveform is reflected only by
its intended target (when p >> L, this causes minor degradation).
With large arrays, this would cause a minor reduction of the number
of degrees of freedom. Similar considerations can hold for the
receive beamformer. When applying a MMSE type of beamformer,
this would also hold, unless the Gaussian noise were stronger than
the interference, in which case we can neglect the contribution of
the targets altogether. Therefore, using approximation (15-16), the
mutual information (13) now becomes

K 2
I(hg;z = log |1 Peklge.e] A
( £ Z‘p) g:zl g( + Zm¢zg/7m(fk)pmyk+0'32(fk) f7
17
where p,,, = [Pm,1, ...,pm,K]T is the power allocation for the m’th
target,

P= [ph sy pL}

is the total power allocation matrix, and p = vec(P). The constants
ge,m are defined by

ge,m(fx) = Wi (fe) R (fr)um (fr)
Pk = |sm(fr)|Af,

and include all the prior information regarding the target signatures
and the channels.
The problem (14) can now be simplified to

maxp 25:1 Oézi (he; ze|p) (18)
subject to S 3K pok < Prax

To solve the multiple waveform design problem, we should note
that (18) is a generalized (non-convex) monotropic optimization
problem, since the summands of (17) are not concave functions.
However, we can show that the time-sharing property [8] holds
for (14). This is because adjacent values of k depend continu-
ously on the channel and target coefficients. Assuming that both
the beamformer and the target PSD are continuous functions of
frequency, the argument of [10] yields the time-sharing property
by using frequency sharing of the solutions. Therefore, we have an
asymptotically zero duality gap (in the number of frequency bins).
Interestingly for any finite K the primal problem is NP-hard [9],
and one cannot expect that solving the dual problem will lead to
the optimal solution. However, on the practical side, one should
note that solving the dual problems, termed Lagrange relaxation,
leads to good suboptimal solutions as we will demonstrate in the
simulation section.

Applying duality theory we obtain that the Lagrangian dual
function is now given by

K
La(A) = infp — Y Ly (P, A) Af + APrax (19)

k=1
where

L
Li(p, A) = Y aeli (he(fu); ze(fi)[Pe) AF + A1y (20)
=1
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The dual problem now becomes

A>0

K
max <Z lf)lf Lk (pk, )\) - )\Pmax) . (21)
k

Note that unlike the case of a single waveform, we will have
multi-dimensional parallel optimization problems. However, this
problem has two significant simplifications: The dimension L of
each problem is much smaller than the typical number of frequency
bins. Second, the problem is unconstrained, which is a major
simplification in the non-convex problem.

We can now solve (21) using bi-section search for A and solving
the parallel problems at each frequency given any specific value of
. This is done using standard unconstrained optimization tools.
While the complexity is still large, it is still linear in the number
of frequency bins. Furthermore our functions are smooth, and the
gradient and Hessian are rational functions. This can be exploited
in solving

P = inf Li(py, A)
Py

IV. SIMULATIONS

In this section we present simulated experiments demonstrating
the design of multiple waveforms under joint total power constraint
using the algorithm of the previous section. We assumed that three
targets are present and designed three waveforms transmitted by an
omni-directional equispaced linear phased array with 10 elements
(% spacing) and received by the same array. The target directions
were 90°,160° and 20°, respectively. The number of frequency bins
was 100. The receive beamformer used was an MVDR beamformer,
and the transmit beamformers were classical beamformers directed
towards the targets.Target signatures were Gaussians corresponding
to target sizes of 17, 10 and 13 meter respectively. The priority
vector was a = [1, 10, 1]/12. The transmit-power-to-receive noise
ratio was 20 dB, and the targets were centered at 8§ GHz. We
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Fig. 1. (a) Designed waveforms (up); (b) Targets’ signatures
(bottom)

can clearly see that the algorithm designed waveforms centered
around 8 GHz with respect to their weights and sizes. In the
next experiment, we tested the sensitivity to spatial resolution of
the targets. We have used the same target sizes and the same
target weights as before. The direction-of-arrival was changed to
be 70°,70.5° and 71° respectively, these directions were chosen in
order to make a strong interference between targets. In the previous
experiment where the targets were spatially resolved we had a
large spectral overlap of the designed waveforms. This overlap
is caused by the fact that the spatial resolution enables the array
to suppress reflections from the other targets therefore allowing
better utilization of the frequency domain for both targets. When
the targets become close the design criteria reduces the inter-target
interference through spectral separation.

Desinged waveforms for two targets
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Fig. 2. (a) Designed waveforms. Spatially unresolved targets (solid).
Spatially resolved targets (dashed); (b) Targets’ signatures (bottom)

V. CONCLUSIONS AND EXTENSIONS

In this paper we have shown that radar waveform design for
multiple target estimation can be accomplished using a linear
combination of mutual informations between each target signal
and the related received beam. Contrary to previous approaches
to MIMO radar, we are the first to allow target weighting, by using
the analogy of multiuser information theory instead of the point-to-
point MIMO model. We then devised a computationally efficient
algorithm for solving the problem in the case of a single waveform
as well multiple waveforms. We note that similar results can be
obtained for the non-causal MMSE design, since in that case the
time-sharing property also holds.

ACKNOWLEDGMENT

We would like to thank Jinjun Xiao for commenting on early ver-
sions of this manuscript, which greatly improved the presentation.
We also thank Wei Yu and Tom Luo for clarifications regarding

[8LI9].

VI. REFERENCES

[1] P.M. Woodward and I.L. Davies, “A theory of radar informa-
tion,” Phil. Mag, vol. 41, pp. 1101-1117, Oct. 1951.

[2] M.R. Bell, “Information theory and radar waveform design,”
IEEE Trans. on IT, vol. 39, pp. 1578-1597, Sept. 1993.

E. Fishler, A. Haimovich, R.S. Blum, D. Chizik, L. Cimini,
and R. Valenzuela, “Spatial diversity in radars - models and
detection performance,” IEEE Trans. on Signal Processing,
vol. 54, pp. 823-838, Mar. 2006.

[4] Y. Yang and R. S. Blum, “Radar waveform design using
minimum mean-square error and mutual information,” IEEE
Trans. on Aerospace and Electronic Systems, 2006. To appear.

[5] A. De-Maio and M. Lops, “Design principles of MIMO radar
detectors,” in Proceedings of the second waveform design and
diversity conference, Jan. 2006.

[6] T.M. Cover and J.A. Thomas, Elements of information theory.
Wiley series in telecommunications, 1991.

[7]1 S. Boyd and L. Vandenberge, Convex optimization.
bridge University Press, 2004.

[8] Wei Yu and R. Lui, “Dual methods for non-convex spec-
trum optimization of multi-carrier systems,” IEEE Trans. on
Comm., vol. 54, pp. 1310-1322, July 2004.

[9] S. Hayashi and Z-Q. Luo, “Spectrum management for inter-
ference limited communication networks.” Submitted IEEE
Trans. on IT., 2006.

[10] Wei Yu, R. Lui, and R. Cendrillon, “Dual optimization
methods for multiuser OFDM systems,” in Proceedings of
Globecom 2004, pp. 1310—, 2006.

3

—

Cam-

Ir-912



