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ABSTRACT

We consider in this paper a likelihood principle based ap-
proach for the range dependent problem in space time adap-
tive processing. The proposed generalized likelihood ratio
test (GLRT) addresses the range dependent issue by directly
applying the likelihood principle to the range dependent sig-
nal model. Using the knowledge of platform geometry, we de-
velop maximum likelihood estimators that facilitate the GLRT.
This differs from existing methods that rely on data transfor-
mations in dealing with the range dependence issue. Numeri-
cal examples show that the new GLRT approach exhibits sig-
nificant performance gain over existing approaches.

Index Terms— Range dependent, General Likelihood Ra-
tio Test, Space Time Adaptive Processing

1. INTRODUCTION

Although shown to achieve good target detection performance,
most space-time adaptive processing (STAP) approaches [1,
2] require large amounts of ’target free’ training data of sec-
ondary range cells for covariance matrix estimation. A peren-
nial issue confronting STAP is the range dependence prob-
lem: even with homogeneous clutters, the radar platforms
often render the secondary data non IID (independent and
identically distributed). Examples include non-side looking
monostatic radars, bi- and multi-static radars, and conformal
arrays. Exhibited as angle-Doppler dispersion in the frequency
domain, the range dependence results in considerable perfor-
mance degradation for sample matrix inversion (SMI) based
STAP even with sufficient secondary data samples.
Significant efforts have been reported to address the range
dependence issue [3—5]. Existing approaches include Doppler
warping (DW) [3], angle-Doppler compensation (ADC) [4],
and registration based methods [5], among others. The above
approaches are exclusively based on data transformations, where
the range dependent secondary data are transformed, under
various criteria, into a data set that are more IID. The trans-
formed data are then used for covariance matrix estimate and
subsequently plugged in test statistics that are designed for
STAP with IID secondary data. For example, DW applies lin-
ear transformation on the secondary data with an attempt to
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match the Doppler frequencies of secondary data clutter ridge
to that of the test cell, with ADC introducing the additional
notion of spectral center for Doppler frequency alignment.
The registration based method, on the other hand, attempts
to realign the entire Doppler-Direction curve to achieve better
homogeneity in the transformed data.

While effective compared with conventional STAPs, these
data transformation based approaches are rather heuristic. At
the very least, there is no guarantee that the transformed sec-
ondary data will be truly TID with the target free test cell data.
In this paper, we abandon the data transformation regime; in-
stead, we tackle the range dependence problem by directly ap-
plying the likelihood principle to the range dependent model
itself. In particular, we develop a generalized likelihood ratio
test (GLRT) that is derived directly using the original range
dependent data set. This new GLRT approach explores the
intrinsic structural relationship of the covariance matrices cor-
responding to different range cells. Not surprisingly, the pro-
posed approach exhibits remarkable performance gain over
existing data transformation-based STAP, as demonstrated via
numerical simulation.

The paper is organized as follows. In Section II we present
the problem formulation for the range dependent STAP, fol-
lowed by the development of the proposed GLRT. In Section
III, we develop the maximum likelihood (ML) estimators that
facilitate the implementation of the GLRT. Section IV gives
numerical examples that demonstrate significant performance
advantages of the proposed GLRT compared with the previ-
ous STAP algorithms. We conclude in Section V.

2. THE GLRT FOR THE RANGE DEPENDENT
PROBLEM

2.1. Problem Formulation

Consider the following hypothesis testing (HT) problem:

HO X=cC
H, x=as+c

where x is the JN X 1 test cell vector with J and N respec-
tively element and pulse numbers; « is the unknown signal
amplitude; s is the known signal (steering) vector; c is the
clutter distributed according to ¢ ~ N(0,X). For the cur-
rent work, we ignore the presence of white Gaussian noise
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and deal only with clutter interference. If 3 is known, the
optimum test statistic is t = |y (sHEfl) x|, where v is some
constant. However, X is typically not known a priori and
needs to be estimated using target free data from secondary
range cells, denoted as x1, - - - , Xg. If the secondary data are
IID and have the same distribution as the target cell clutter,

k
one can form the sample covariance matrix: 3 = — g x;xH.
i=1
For the range dependent problem where X1, --- ,X) are no

longer IID, sample covariance matrix based STAP test will
suffer performance loss.

2.2. Proposed Method

To motivate the proposed GLRT approach, we revisit the clas-
sical clutter patch based clutter model [6]. Denote by X; the
clutter covariance matrix for the ith range cell and neglect the
intrinsic clutter motion, we have

Nc H
=2 vy M)
j=1

. J
and 1} are respectively the stearing vector and received clutter

power for the jth clutter patch in the ith range cell. Assume
that the propagation loss is properly compensated and a ho-
mogeneous clutter environment, one can regard 77§ as constant
across all range cell 4, denoted by 7;. Clearly, 7; is a func-
tion of both the radar cross section of the jth clutter patch
and the antenna pattern. With this model, the range depen-
dence is reflected in the distinct steering vectors correspond-
ing to a given clutter patch for different range cells. From [6],
V} is related to spatial and Doppler frequency ( f5§, fdj.), ie.
v§- = v( fd;-, fs;-) . For a given clutter patch in a particular
range cell, its corresponding fd;- and fS;’- are uniquely deter-
mined by the platform geometry, i.e., in the case of non-side
looking radar, determined by the crab angle (the angle be-
tween platform velocity and array orientation) and the cone
angle. As such, assuming perfect platform knowledge, these
vj-’s can be computed and only the power terms 7); are un-
known.

With the above model, one can reframe the original HT
problem into the following one incorporating the secondary
data: fori =1,--- ,k,

Hy x~ CN(O’ E(n))axi ~ (07 zz(n))
H, x~ C’N(as, E(n)vxi ~ (0’ 2(”7))

where the dependence of the covariance matrices on the un-
known 1 = (11, -+ ,mn,) is explicit. With this formulation,
the GLRT for the hypothesis testing is

where Nc is the total number of discrete clutter patches, v

. max f(x,x1, -, x,[Hy)
LRT — Q,M1,M2, 3N Ne ] 2
max }f(x,xl,n- , x| Ho) 2)

{n1,m2, MNe

Assume that x, x1, - -+ , X}, are independent, we get,

fxxa, - xp[Hy) = f(X|Hl)ﬁlf(Xi|Hl)7 forl =0,1,

where 7

fxlH) = mexp (—tr (5 5xT)), 1=0,1
o) = e e (i (3 ),

f (x/H) mexp (o (57 (x— as)(x —as)"))

Next, we develop the ML estimates under both hypotheses
to facilitate the implementation of the GLRT.

3. MAXIMUM LIKELIHOOD ESTIMATE

The ML estimation under Hy and H; are classical uncon-
strained optimization problems. Ideally, one would hope for
closed form solutions, which will lead to a closed-form GLRT
statistic. For the problems at hand, no closed-form solutions
are available. Instead, we will develop a numerical procedure
for the estimation problem using the gradient method [7].

We first evaluate the gradient of the log likelihood func-
tion over the unknown parameters under both hypotheses. Con-
sider Hy first. Take partial differentiation with respect to 7);

A .
and define xg = x for notational reason, we get

0
87773' log(f (X7 X1y 7Xk‘HO))
k
0 0
= ——logdet X; — —tr E;lxixf > 3)
; ( In; In; ( )

In the following, we introduce the following three lemmas
in matrix calculus without proof:

Lemma 1 [8, page 23-24] Let A(x) be an n X n matrix,
with scalar variable x, then,

LA =Yt
k=1

where A(z) = det(A(x)); Ak (z) is the determinant formed
by replacing the kth row by the row of derivatives,{a,;()}},
j=1,--,n.

Lemma 2 [8, page 16] Let A be an n X n matrix, define the
inverse matrix of A is A1, then,

A7t = [(=1)F) det(Ay)], 0,5 =1, ,n,

where A;; is the (n — 1) x (n — 1) matrix formed by deleting
row i and column j from A.
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Lemma 3 Let A(x) be an n X n matrix with scalar variable

x, and let {b,c} be n x 1 constant vector with respect to

variable x. Then,
0

— b A(z)c=b"
5773 ( )

0A(z)
anj

C.

Applying the three lemmas, we can obtain Eq. (4,5) shown
at the top of this page, where Alj denotes the n X n matrix
formed by retaining row k and set all the other rows as zero
from the n x n matrix A. Given Eq. (4,5), we can then com-
pute the gradients of the log likelihood functions under Hy
and H;. The final results are given in Eq. (6-8) at the top of
next page, where ¥; is defined as Eq. 1. With these gradients,
the ML estimation can be carried out straightforwardly using
the gradient method [7].

4. NUMERICAL ANALYSIS

In this section, we evaluate the detection performance of the
proposed GLRT via numerical examples and compare it with
that of the CFAR detector in [2]. The CFAR test in [2] was de-
veloped by first assuming covariance matrix known and then
replacing it with estimated covariance matrix. Here we con-
sider three methods for covariance matrix estimation:

e Sample covariance matrix using the original data. This
is the original CFAR test in [2].

e Sample covariance matrix using the data transformed
via Angle Doppler compensation [4].

e The ML estimate developed using the proposed approach
in Section 3 by discarding the test cell data.

Of particular interest is the last one, where we plug our
ML estimate into a standard STAP test, which is termed as
a Mixed Approach. We will see that while this outperforms
other covariance matrix estimate, the performance still comes
far below the true GLRT approach.

We assume a four antenna two pulse (hence JN = 8
dimensions) configuration with a crab angle 7/6. Assume
that the total number of clutter patches is N, = 16 which is
known to the estimator. The secondary data size is 30.

Fig. 1 is the receiver operating characteristic (ROC) curve
of the four test approaches. While ADC does show reasonable

improvement over SMI, the mixed approach outperforms both
SMI and ADC:; its advantage comes with a more accurate,
albeit complex, estimation of the covariance matrix. More
importantly, the proposed GLRT outperforms all three alter-
natives by a significant margin, demonstrating the advantage
of applying the likelihood principle directly to the data model.

The clutter patch based covariance model (1) is only mod-
elling tool for the actual clutter covariance. For this model to
be accurate, N, needs to be sufficiently large and is typically
unknown to the STAP processor. For this purpose, we test
the detection performance where the data is generated using
N, = 100 clutter patches, whereas the ML estimate only as-
sumes N, = 16, i.e., one will estimate the 16 ‘virtual’ clutter
patches that are representative of the true clutter covariance
matrix. The results are given in Fig. 2. The proposed GLRT
has very robust performance gain over the other three meth-
ods, where a standard STAP was used with various covariance
matrix estimate.

5. CONCLUSION

In this paper, we describe some initial attempts to develop a
new detection paradigm for the range dependent problem that
exploits the structural knowledge of clutter covariance ma-
trix. The proposed GLRT differs from existing approaches in
that it abandons the heuristic data transformation framework
in favor of a systematic likelihood principle based approach.
The potential gain in detection performance over previous ap-
proaches for the range dependence problem is enormous, as
demonstrated by the numerical simulations. Indeed, initial re-
sults using P; over SNR plot (not included due to space limit)
with low dimensional cases indicated an SNR gain of > 5dB
over existing approaches.

While the performance gain is promising, the complex-
ity of the ML estimation presents a significant challenge for
high dimensional case. Our future research will be focused
on finding sub-optimal procedures to make the computation
more affordable. An interesting direction is to integrate the
likelihood principle based framework with joint domain lo-
calized (JDL) detector, which is both data and computation-
ally efficient. We will also extend the developed framework
to more complicated cases, in terms of both clutter model
(e.g., incorporating receiver noise) and radar platforms (e.g.,
bi-/multi-static radars and conformal arrays).
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