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ABSTRACT

The Bartlett algorithm results from a conventional (Fourier or beam-
forming) approach to power spectral estimation and the Capon al-
gorithm results from an adaptive approach. Both algorithms make
use of the data sample covariance matrix (SCM). The Bartlett al-
gorithm relies directly on the SCM, while the Capon approach re-
lies on the inverse of the SCM. Since both statistics depend on the
same data, they are not independent in general. While the marginal
distribution of each statistic is well-known, the joint dependence is
unknown. This paper presents a complete statistical summary of
the joint dependence of the Bartlett and Capon statistics, showing
that the dependence is expressible via a 2 × 2 complex Wishart
matrix where the coupling is determined by a single measure of
coherence de ned herein. Interestingly, this measure of coherence
leads to a new two-dimensional algorithm capable of yielding bet-
ter resolution than the Capon algorithm.

Index Terms–Adaptive, Bartlett, beamforming, Capon, coher-
ence, conventional, cross-spectra, joint pdf, resolution, two-dimen-
sional.

1. INTRODUCTION

The Bartlett algorithm results from a conventional (Fourier or beam-
forming) approach to power spectral estimation and the Capon al-
gorithm results from an adaptive approach. Both algorithms make
use of the data sample covariance matrix (SCM). The Bartlett algo-
rithm relies directly on the SCM, while the Capon approach relies
on the inverse of the SCM. Since both statistics depend on the same
data, they are not independent in general. While the marginal dis-
tribution of each statistic is well-known [1], the joint dependence
is unknown. Techniques such as diagonal loading help in the low
sample support case [5], but likewise engage the trade-space be-
tween conventional and adaptive approaches. Can this trade-space
be characterized statistically? This is a dif cult task in general, but
this paper provides a start. Herein a complete statistical summary
of the joint dependence of the Bartlett and Capon statistics is pre-
sented, showing that the dependence is expressible via a 2×2 com-
plex Wishart matrix where the coupling is determined by a single
measure of coherence de ned herein. Interestingly, this measure
of coherence naturally suggests a new two-dimensional algorithm
yielding better resolution than the Capon algorithm.

This work was sponsored by Naval Sea Systems under Air Force con-
tract FA8721-05-C-0002. Opinions, interpretations, conclusions, and rec-
ommendations are those of the author and are not necessarily endorsed by
the United States Government.

2. POWER SPECTRAL ESTIMATION

The Capon and Bartlett algorithms represent lterbank approaches
to spectral estimation [10]. Data is obtained from an array of N
sensors distributed in space. Each data observation taken across
the array (called a spatial snapshot) is modeled as an N × 1 zero
mean complex Gaussian vector1 with representation x = Sv(θ)+
n where the array response of the signal of interest associated with
direction-of-arrival (DOA) parameter θ is given by v(θ), and its
complex amplitude is Gaussian distributed such that S ∼ CN 1

(0, σ2
S), and the colored noise is denoted by n having covariance

E{nnH} = RN , where E{·} denotes the statistical expecta-
tion. Note that E{x} = 0 and that E{xxH} = R = RN +
σ2

Sv(θ)vH(θ). A nite set of L array observations is accrued over
time and assembled in a data matrix: X = [x(1)|x(2)| · · · |x(L)],
where x(l) ∼ CNN (0,R), l = 1, 2, . . . , L. The spatial snap-
shots are used to form the unnormalized data spatial covariance
estimate bR = XXH , the unnormalized SCM, from which the
Capon and Bartlett algorithms generate spatial power spectral es-
timates. It shall be assumed herein that L ≥ N to guarantee SCM
invertibility.

3. THE BARTLETT AND CAPON ALGORITHMS

The Capon and Bartlett DOA angle estimates are obtained as the
arguments of the largest peaks of the estimated spatial power spec-
tra. If P (θ) represents the estimated spectrum as a function of an-
gle, then the maximum output provides an estimate of the signal
power σ2

S , and the signal DOA estimate is given by the scan value
of θ that achieves this maximum; namely,

bθ = argmax
θ
P (θ) (1)

(assuming a single signal is present). It shall be assumed that K
signals are present in the data, and that the Capon/Bartlett param-
eter estimates bθk, k = 1, 2, . . . ,K are obtained as the arguments
of theK largest peaks of P (θ).

1The notational convention adopted is as follows: italics indicates a
scalar quantity, as in A; lower case boldface indicates a vector quantity, as
in a; upper case boldface indicates a matrix quantity, as in A. The n-th
row andm-th column of matrixA will be indicated by [A]n,m. Variables
will be assumed complex in general, but some will be real (obvious from
context). Re(A) is the real part of A and Im(A) is the imaginary part. The
complex conjugation of a quantity is indicated by a superscript ∗ as inA∗.
The matrix transpose is indicated by a superscript T as in AT , and the
complex conjugate plus matrix transpose is indicated by a superscript H
as inAH = (AT )∗.
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3.1. The Bartlett Algorithm

Let the conventional beamforming weight steered to angle θ for
an array with element spatial locations zn, n = 1, 2, . . . , N be
given by v(θ) = [ejkT

θ z1 , ejkT
θ z2 , . . . , ejkT

θ zN ]T , where kθ =
(2π/λ)a(θ) is the wavenumber vector, a(θ) is the 3 × 1 unit vec-
tor pointing in the assumed direction of eld propagation, λ = c/f
is the wavelength at temporal frequency f , and c is the wave propa-
gation speed. Note that for a uniform linear array (ULA), this spa-
tial lter weight can be easily implemented with the Fast Fourier
Transform (FFT). The Bartlett spectral estimate evaluated at spa-
tial frequency (or angle) θ is given by

PBartlett(θ) =
1

L

LX
l=1

˛̨̨
vH(θ)x(l)

˛̨̨2
=

1

L
· vH(θ) bRv(θ) (2)

with ambiguity function de ned as ψBartlett(θ)
�
= vH(θ)Rv(θ).

3.2. The Capon Algorithm

Capon proposed the following constrained optimization problem
for the lterbank weight vectorw

min
w

wHRw such that wHv(θ) = 1 (3)

=⇒ wMV DR =
R−1v(θ)

vH(θ)R−1v(θ)
,

that yields the well known minimum variance distortionless re-
sponse (MVDR) lter as its solution. Note that the optimal lter
weight depends on the data covariance matrixR. By construction,
this optimal lter will cancel all spatially coherent energy from
all directions other than the scan direction θ. The average output
power is given by

E
n˛̨

wH
MV DRx

˛̨2o
=

1

vH(θ)R−1v(θ)

�
= ψCapon (θ)

=
1

vH(θ)R−1
N v(θ)

+ σ2
S

(4)

where the Capon ambiguity function ψCapon(θ) has been de ned.
The last equality in (4) holds only when the signal array response
in R perfectly matches that used to form the weight vector, and
when R is perfectly known. Capon, therefore, reasoned that for
large enough sample support, an estimate of the covariance R
can be used with (4) to estimate the signal power σ2

S and the
corresponding signal parameter θ. Using the covariance estimatebR = XXH , Capon proposed the following power spectral esti-
mator

PCapon(θ) =
1

L−N + 1
· 1

vH(θ) bR−1v(θ)
. (5)

PCapon(θ) can be further normalized to ensure that it is a true
power spectral density.

3.3. Properties of Estimators

The reader is referred to [10] for a detailed discussion of properties
and contrasts between conventional Bartlett and adaptive Capon
approach. It is noted brie y herein that the Bartlett estimator has
resolution capability limited by the aperture length (Fourier limit)

independent of signal-to-noise ratio (SNR), and due to its vulnera-
bility in the sidelobes various windows/tapers have been proposed
for sidelobe control. The Capon estimator, however, has superior
resolution ability that improves with SNR, and it adaptively nulls
any energy in the sidelobes while passing the direction of interest
undistorted.

Both the Bartlett and Capon statistics have marginal distribu-
tions that are complex chi-squared [1, 9].

4. CROSS COHERENCE AND JOINT PDF OF
SPECTRAL ESTIMATES

De ne the lter weight steered to angle θb for the Bartlett algo-
rithm as wB = v(θb) and its output from a single snapshot as
yB(θb). De ne the clairvoyant lter weight steered to θa for the
Capon algorithm aswC = R−1v(θa)/vH(θa)R−1v(θa) and its
output based on the same spatial snapshot as yC(θa):

x −→ wC −→ wH
C x = yC(θa)

x −→ wB −→ wH
B x = yB(θb).

(6)

The cross coherence between these two lters is given by

cos2φ �
=

E
˘|yB(θb) · y∗C(θa)|2¯

E
˘|yB(θb)|2

¯ · E ˘|yC(θa)|2¯
=

ψCapon(θa)

ψBartlett(θb)

˛̨̨
vH(θa)v(θb)

˛̨̨2
.

(7)

As implied by the denotation this measure of cross coherence can
likewise be interpreted as a generalized cosine [2] between the op-
timal adaptive beamformer weight vector, i.e. any ∝ R−1v(θa),
and a non-adaptive conventional beamforming weight vector, i.e.
any ∝ v(θb), where the metric space is de ned by the true data
covariance R, allowing one to also de ne the generalized sine
sin2φ �

= 1 − cos2φ. Because of the weighting by the data co-
variance, this cosine can be less than unity even when the array
responses are steered to the same direction, i.e. when θa = θb.

The statistical dependence between the SCM based Bartlett
and Capon spectral estimates is ultimately determined by this mea-
sure of cross coherence [7]. A summary is provided in the follow-
ing subsections using the related but equivalent statistics below:

P̃Capon(θa)
�
= (L−N + 1) · PCapon(θa),

P̃Bartlett(θb)
�
= L · PBartlett(θb).

(8)

4.1. Partially Coherent Spectral Estimates: 0 < cos2φ < 1

De ne the following 2× 2 matrix

Ξ
�
=

» p
ψCapon(θa) vH(θa)v(θb)

p
ψCapon(θa)

0
p
ψBartlett(θb) · sin2φ

–
. (9)

Let Θ ∼ CW (L−N + 1, I2), i.e. standardized central 2 × 2

complex Wishart distributed matrix. IfΔ �
= ΞHΘΞ, then it fol-

lows that [4, 9]

Δ ∼ CW
“
L−N + 1,ΞHΞ

”
where (10)
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ΞHΞ = ψCapon(θa)

24 1 vH(θa)v(θb)

vH(θb)v(θa)
ψBartlett(θb)

ψCapon(θa)

35 . (11)
It can be shown [7] that an equivalent stochastic representation for
the Capon and Bartlett estimates when based on the same SCM is
given by2

P̃Capon(θa)
d
= [Δ]1,1

P̃Bartlett(θb)
d
= [Δ]2,2 + χ2

N−1 · ψBartlett(θb)
(12)

where χ2
N−1 is a complex chi-squared statistic of N − 1 degrees

of freedom [9] independent ofΔ. This statistical summary shows
that the adaptive and conventional spectral estimates are coupled
via a 2 × 2 complex Wishart matrix. It also represents a general-
ization of the Capon-Goodman result in [1], since it also conveys
joint dependence and not just the marginal distributions of each
statistic.

As an example of the utility of (12), note that the correlation
coef cient of the SCM based spectral estimates, i.e.

ρCB
�
=

cov [PCapon(θa), PBartlett(θb)]p
var [PCapon(θa)] · var [PBartlett(θb)]

(13)

is obtainable using known moments of complex Wishart matrices
[3] and given exactly by

ρCB =

r
L−N + 1

L
· cos2φ. (14)

4.2. Perfectly Coherent Spectral Estimates: cos2φ = 1

By the Schwartz inequality it follows that cos2φ = 1, and there-
fore sin2φ = 0, if and only ifRv(θb) ∝ v(θa). Note that Ξ will
not be full rank in this case. It can be shown [7] that in this case
the stochastic representation in (12) simpli es to

P̃Capon(θa)
d
= cχ

2
L−N+1 · ψCapon(θa)

P̃Bartlett(θb)
d
=

ˆ
cχ

2
L−N+1 + χ2

N−1

˜ ×
τ · ψBartlett(θb)

(15)

where cχ
2
L−N+1 and χ2

L are independent complex chi-squared
statistics. The left subscript c on cχ

2
L−N+1 is a tag to indicate that

the same random variable is being referenced, and τ is real scalar
related to the constant of proportionality for the general case of
Rv(θb) ∝ v(θa).

4.3. Perfectly Incoherent Spectral Estimates: cos2φ = 0

Note that if vH(θa)v(θb) = 0, i.e. the steering vectors are mu-
tually orthogonal, then cos2φ = 0 from which it follows [7] that
ΞHΞ is diagonal and the Capon and Bartlett spectral estimates are

2If random variableA has the same probability density function as ran-
dom variable B, then they are said to be equal in distribution and this is
denoted by A

d
= B.

not only uncorrelated, but are also statistically independent even
though based on the same SCM. The statistical summary becomes

P̃Capon(θa)
d
= χ2

L−N+1 · ψCapon(θa)

P̃Bartlett(θb)
d
= χ2

L · ψBartlett(θb)
(16)

whereχ2
L−N+1 andχ2

L are independent complex chi-squared statis-
tics. Clearly, the correlation in the sidelobe structure of the beam-
pattern is the major determinant of the level of coherence between
the Capon and Bartlett estimates.

4.4. A New 2-D Algorithm: A Cross Spectral Estimate

Since the cross coherence de ned in (7) clearly plays a critical
role in the describing the dependence between these two spectral
estimates, it is reasonable to consider what can be learned or in-
ferred from a SCM based estimate of this measure. De ne the
SCM based estimate of the cross-spectra of the Capon and Bartlett
algorithms as

PCB(θa, θb) =

˛̨
vH(θa)v(θb)

˛̨2
[L/(L−N + 1)]

vH(θa) bR−1v(θa) · vH(θb) bRv(θb)
. (17)

The distribution of this new statistics can be determined from (12)
(see [7]). In the next section, its use in resolving signals is demon-
strated.

5. NUMERICAL EXAMPLES

Consider a Direction of Arrival (DOA) estimation scenario involv-
ing two equal power planewave sources and a set of signal bearing
snapshots

x(l) ∼ CN
"
0, I +

2X
k=1

σ2
Sk

v(θk)vH(θk)

#
(18)

l = 1, 2, . . . , L for an N = 18 element uniform linear array
(ULA) with slightly less than λ/2 element spacing, and L = 3N
snapshots. The array has a 3dB beamwidth of 7.2 degrees and
the desired target signals are placed at θ1 = 90 degrees (array
broadside), θ2 = 93 degrees (less than half a beamwidth separa-
tion). Figure 1 illustrates the cross spectrum estimate PCB(θa, θb)
shown by the gray color scale. Plotted on top of this image are nor-
malized versions of the Capon and MUSIC algorithm 1-D spectra
for comparison. This is an example for which the MUSIC algo-
rithmwas able to resolve two signals at σ2

Sk
= 1 dB, but the Capon

algorithm has failed. The cross spectrum, however, shows two dis-
tinct peaks located at the same angles as the two peaks of the MU-
SIC algorithm, but obtained without knowledge of the rank of the
signal subspace. This is clearly a single realization in which the
true probability of resolution for the Capon algorithm is a little less
than 10 percent. Averaging over several realizations, an emprically
based estimate of the probability of resolution can be obtained for
all three algorithms. Using same parameters, the results are illus-
trated in Figure 2 and based on 150 Monte Carlo simulations for
each SNR point. Included for comparison is the theoretical two-
point probability of resolution derived for the Capon algorithm
(black circles) [6]. The two signals were declared resolved for the
Capon and MUSIC algorithm if two peakes appeared in the spec-
trum within the range of 88 to 95 degrees. For the cross-spectrum
the two signals were declared resolved if two peaks appeared in
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the slanted slither of a±7 degree band of Bartlett angles about the
diagonl of the spectrum, but within the Capon angle range of 88
to 95 degrees. This gure shows signi cant improvement of res-
olution by the cross spectrum over both the Capon algorithm and
MUSIC for this particular example.

Detailed theoretical analysis of this algorithm is ongoing [7],
however, these initial results are encouraging. Additional analysis
and further examples will be presented at the conference.

6. CONCLUSIONS

This paper provides a complete statistical summary of the joint de-
pendence of the Bartlett and Capon power spectral statistics, show-
ing that the coupling is expressible via a 2 × 2 complex Wishart
matrix where the degree coupling is determined by a single mea-
sure of cross coherence de ned herein. This measure of coher-
ence leads to a new two-dimensional algorithm capable of yielding
sign cantly better resolution than the Capon algorithm, often com-
mensurate wit but at times exceeding nite sample based MUSIC.
Initial numerical results are encouraging and theoretical analysis
is ongoing.
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Fig. 1. Single realization Demonstrating Resolution of Cross-
Spectrum

Fig. 2. Probability of Resolution of Cross-Spectrum vs. SNR
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