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Abstract — Multidimensional ESPRIT-type parameter esti-
mation algorithms obtain their frequency estimates from the
solution of sets of highly structured equations (the shift invari-
ance equations). The Structured Least Squares (SLS) algo-
rithm is known as an ef cient method to obtain these solutions
since the inherent structure is explicitly taken into account.

In this contribution we show that if the underlying
R-dimensional signals are represented by tensors, this
structure can be exploited even further. In addition to an
improved signal subspace estimate, the SLS algorithm is
modi ed to directly exploit the tensor structure of the signal
subspace obtained through the higher order SVD. The
resulting algorithm which we term Tensor-Structure
SLS offers a superior performance compared to existing
approaches in critical cases, e.g., if there are highly correlated
sources or a small number of available snapshots.

Keywords: Direction of arrival estimation, Multidimensional
signal processing, Parameter estimation, Array signal processing

1. INTRODUCTION
High resolution parameter estimation from R-dimensional signals
is a task that is required for a variety of applications. Its studies
have given rise to many ef cient algorithms. A prominent class
among these are ESPRIT-type algorithms, e.g., standard ESPRIT
[11], Unitary ESPRIT [5] or its R-D extensions [6].

One of the key steps in all ESPRIT-type methods is the solu-
tion of the highly structured invariance equations. In addition to
the simple Least Squares (LS) solution, extensions known as To-
tal Least Squares (TLS, [3]) and Structured Least Squares (SLS,
[4]) have been proposed. Since the latter takes the structure of
the invariance equations into account, it is superior to LS and TLS
methods.

In most approaches known to date, the underlying
R-dimensional signals are stored in matrices. This representation
does not account for the grid structure inherent in the data. A
more natural approach is to use tensors for these signals which
leads to Tensor-ESPRIT-type algorithms [10], e.g., the R-D
Unitary Tensor-ESPRIT algorithm. In contrast to existing tensor
approaches using PARAFAC [12] we focus on the direct analogy
to the matrix case and use the corresponding extensions to the
concepts of the SVD (i.e., the higher order SVD [1]) and the
low-rank approximation [2].

In this contribution the tensor data model and extensions to
ESPRIT-type algorithms for tensors are reviewed. We then ex-
tend the idea of SLS to tensors. First, it is shown how SLS can
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be expressed in the analogous tensor notation. Then we develop
the Tensor-Structure Structured Least Squares (TS-SLS) algorithm
and itsR-D extension which both do not only exploit the structure
of the invariance equations but additionally the particular structure
in the signal subspace obtained through the higher order SVD. The
performance of the algorithms is compared through computer sim-
ulations at the end of this paper.

2. TENSOR AND MATRIX NOTATION
In order to facilitate the distinction between scalars, matrices, and
tensors, the following representations are used: Scalars are
denoted as italic letters (a, b, . . . , A,B, . . . , α, β, . . .), vectors as
lower-case bold-face letters (a, b, . . .), matrices as bold-face
capitals (A, B, . . .), and tensors are written as bold-face
calligraphic letters (A, B, . . .). We use the superscripts
T ,H ,−1 ,+ for transposition, Hermitian transposition, matrix
inversion, and the Moore-Penrose pseudo inverse of matrices and
∗ for complex conjugation, respectively. Moreover the Kronecker
product between two matricesA and B is denoted by A ⊗B.

The tensor operations we use are consistent with [1]: The
scalar product of two tensorsA, B ∈ C

I1×I2×...×IN is symbol-
ized by 〈A, B〉 and computed by summing the element-wise prod-
uct of A and B∗ over all indices. This de nition allows us to de-
ne the higher-order norm of a tensor A as ||A||H

.
=
√
〈A, A〉,

similarly to the Frobenius norm of a matrixA denoted as ||A||F.
The n-mode product: The product of a tensor

A ∈ C
I1×I2×...×IN and a matrix U ∈ C

Jn×In along the n-th
mode is denoted asA×n U ∈ C

I1×I2...×Jn...×IN . It is obtained
by multiplying all n-mode vectors of A from the left-hand side
by the matrix U .

The HOSVD: The higher order SVD of a tensor
X ∈ C

I1×I2×...×IN is given by
X = S ×1 U 1 ×2 U 2 . . .×N UN , (1)

where S ∈ C
I1×I2×...×IN is the core-tensor which satis es

the all-orthogonality conditions [1] and Un ∈ C
In×In ,,

n = 1, 2, . . . , N are the unitary matrices of n-mode singular
vectors. The notation [A n B] denotes the concatenation ofA
and B along the n-th mode. Moreover, a matrix unfolding of the
tensor A along the n-th mode is symbolized by A(n) or [A](n)

and can be understood as a matrix containing all the n-mode
vectors of the tensor A. The order of the columns is chosen in
accordance with [1].

In extension to [1] we de ne the vec-operator on a tensor A
as vec {A} = a, where the n-th component of a is given by
i1 + I1 · (i2 − 1) + I2 · I1 · (i3 − 1) + . . . + IN · . . . · I2 · I1 ·
(iN − 1), ip = 1, 2, . . . , Ip, p = 1, 2, . . . , N . Then there exist
unique permutation matrices P (n) that rearrange the elements in
vec

{
[A](n)

}
such that they are equal to vec {A}, i.e.,
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vec {A} = P
(n) · vec

{
[A](n)

}
∀A. (2)

These permutation matrices represent a direct extension of the con-
cept of commutation matrices known from the matrix case [9].

3. DATAMODEL
The methods presented in this paper are applicable to R-D har-
monic retrieval problems, which can ef ciently be formulated in
terms of tensor equations, as rst demonstrated in [10].

The measurement data is modeled as a superposition of d un-
damped exponentials from narrowband sources, sampled on an
R-dimensional grid of M = M1 × M2 . . . × MR sensors and
observed at N subsequent time instants. The superposition of d
undamped exponentials is described by

xm1,m2,...,mR,n =
d∑

i=1

(
R∏

r=1

e
j·(mr−1)·μ

(r)
i

)
· si(n),

+nm1,m2,...,mR,n (3)

withmr = 1, 2, . . . , Mr , spatial frequencies μ
(r)
i , symbols si(n)

and noise samples nm1 ,m2,...,mR,n which are assumed to
be i.i.d. zero mean circularly symmetric complex Gaussian
random variables. In the classical matrix approach [6] equation
(3) is converted into a matrix equation by stacking the dimensions
into a measurement matrix X ∈ C

M×N which can then be
modeled as

X = A · S + N . (4)
Here, A ∈ C

M×d represents the R-D array steering matrix, S ∈
C

d×N contains the complex symbols and the matrixN the noise
samples. Since this stacking does not capture the lattice structure
inherent in the measurement data, we de ne a measurement tensor
Y ∈ C

M1×M2...×MR×N which contains the samples from the
measurement process and can be modeled through

Y = A ×R+1 S
T + N , (5)

where A ∈ C
M1×M2...×MR×d now represents the array steering

tensor and N ∈ C
M1×M2...×MR×d the noise tensor. Note that

[A](R+1) = AT and [Y ](R+1) = XT .

4. TENSOR SHIFT INVARIANCE EQUATIONS

The tensor data model allows us to express the shift invariance
equations in tensor notation in the following fashion
A ×r J

(r)
1 ×R+1 Φ

(r) = A ×r J
(r)
2 , r = 1, 2, . . . , R, (6)

Φ
(r) = diag

{[
e

jμ
(r)
1 , . . . , e

jμ
(r)
d

]}
,

where μ
(r)
i denotes the spatial frequency of the i-th wavefront in

the r-th mode and J
(r)
n ∈ R

M
(sel)
r ×Mr , n = 1, 2 represent the

selection matrices for the r-th mode, r = 1, 2, . . . , R that select
M

(sel)
r out ofMr elements.
Now we introduce the “economy size” version of the HOSVD

of the measurement tensor Y given by

Y = S [s] ×1 U
[s]
1 ×2 U

[s]
2 . . .×R+1 U

[s]
R+1, (7)

where U
[s]
r ∈ C

Mr×pr , r = 1, 2, . . . , R, U
[s]
R+1 ∈ C

N×d,
S [s] ∈ C

p1×p2...×pR×d, and pr = min(Mr, d) for N ≥ d (if
N < d spatial smoothing has to be applied to increase N [10]).
Equation (7) holds exactly in the absence of noise. For the noisy

tensor (7) represents a low-rank approximation. It can be obtained
by truncating the r-th mode of the core tensor to pr elements and
the singular vector matricesU r to pr columns for r = 1, 2, . . . , R
(for r = R + 1 truncate to d elements). However, in [2] it is
shown that the best rank-(p1, p2, . . . , pR, d) approximation in the
least squares sense can only be computed through an iterative pro-
cedure. Nevertheless, the parameter estimation results obtained by
the two methods are very similar as long as the SNR is not too low.

As an improvement of the basis for the estimated signal sub-
spaceU s ∈ C

M×d known from the matrix approach [4] we de ne
a tensor U [s] ∈ C

M1×M2...×MR×d through

U [s] = S [s] ×1 U
[s]
1 ×2 U

[s]
2 . . . ×R U

[s]
R . (8)

It can easily be shown that in the absence of noise U [s] andA are
related through a non-singular d×d transform matrix T , such that

A = U [s] ×R+1 T , (9)

which implies that the r-spaces of A and U [s] are equal for r =
1, 2, . . . , R. With additive noise, (9) holds approximately. Using
(9) in (6) we obtain the shift invariance equations in terms of the
signal subspace given by

U [s] ×r J
(r)
1 ×R+1 Ψ

(r) ≈ U [s] ×r J
(r)
2 , r = 1, 2, . . . , R, (10)

whereΨ
(r) has the same eigenvalues asΦ(r). The LS solution to

(10) is given by [10]

Ψ
(r)T

=

(
J̃

(r)

1 ·
[
U [s]

]T

(R+1)

)+

· J̃
(r)

2 ·
[
U [s]

]T

(R+1)
.(11)

J̃
(r)

i = I∏r−1
q=1 Mq

⊗ J
(r)
i ⊗ I∏R

q=r+1
Mq

, i = 1, 2.

Obviously, this solution is similar to the least squares solution in
the matrix approach except for the fact that the estimated basis for

the signal subspace U s is replaced by
[
U [s]

]T

(R+1)
. We can there-

fore conceive the latter as an improved signal subspace estimate.
The improvement results from the fact that in the tensor case we
take the special structure of theR-dimensional lattice into account
while computing a low-rank approximation based on the HOSVD
of the measurement tensor. This allows us to “denoise” the mea-
surements more ef ciently.

The concepts of forward-backward averaging and the mapping
of centro-Hermitian matrices to real-valued matrices [8] can also
be extended to tensors [10]. This leads to the real-valued shift
invariance equations given by

E [s] ×r K
(r)
1 ×R+1 Υ

(r) = E [s] ×r K
(r)
2 , where (12)

K
(r)
1 = 2 ·Re

{
Q

H

M
(sel)
r

· J
(r)
2 ·QMr

}
and

K
(r)
2 = 2 · Im

{
Q

H

M
(sel)
r

· J
(r)
2 ·QMr

}
, r = 1, 2, . . . , R.

Here, Qp are the well-known p × p left-Π-real matrices which
satisfy Π · Q∗p = Qp and the eigenvalues λ

(r)
i of the matri-

ces Υ
(r) are related to the spatial frequencies through μ

(r)
i =

2 · arctan(λ
(r)
i ). Moreover, E [s] is the multidimensional exten-

sion of the real-valued basis for the signal subspace Es from the
matrix approach. It is obtained through the HOSVD of the trans-
formed measurement tensor ϕ(Z) in the same manner as U [s] is
obtained from Y , where ϕ(Z) is given by

ϕ(Z) = Z ×1 Q
H
M1
×2 Q

H
M2

. . .×R Q
H
MR

×R+1 Q
H
2N , and

Z = [Y R+1 Y∗ ×1 ΠM1 ×2 ΠM2 . . .×R+1 ΠN ] .
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5. TENSOR-STRUCTURE SLS
The structured least squares algorithm developed in [4] represents
an ef cient way to solve the invariance equations since their in-
herent structure is explicitly taken into account. In this section
we use the complex-valued shift invariance equations from (10).
However, the same methods apply to the solutions of (12) as well.

The key idea of SLS is to take into account the fact that the sig-
nal subspace is not known without error. Therefore, a perturbation
termΔU s for the matrixU s is modeled and the least squares solu-
tion to the invariance equations with respect to the unknown matrix
Ψ

(r) and the perturbation term ΔU s is computed. This concept
can directly be extended to (10) by de ning a tensor-perturbation
term for U [s] which results in the following optimization problem

min
Ψ

(r)
,ΔU [s]

{∣∣∣∣∣∣R(r)
∣∣∣∣∣∣2

H
+ κ

2 ·
∣∣∣∣∣∣ΔU [s]

∣∣∣∣∣∣2
H

}
(13)

R
(r)

=

(
U

[s]
+ ΔU

[s]
)
×r J

(r)
1 ×R+1 Ψ

(r)
−

(
U

[s]
+ ΔU

[s]
)
×r J

(r)
2 ,

where R(r) is termed the residual tensor, and the second term in
the cost function represents a regularization term.

It turns out that the solution to this tensor-valued SLS problem
results in an algorithm performing essentially the same computa-
tions as the corresponding matrix SLS algorithm. As in the tensor
formulation for LS [10] the only difference is that from the tensor
approach we have an improved signal subspace estimate given by[
U [s]

]T

(R+1)
. If we use this matrix in the matrix SLS algorithm we

obtain the same result as by using U [s] in the tensor version. In
other words, (13) represents an equivalent formulation for the SLS
problem using tensors.

In contrast to (13), the TS-SLS algorithm additionally exploits
the structure of the signal subspace obtained through the HOSVD.
The key idea of this method is that instead of modeling one per-
turbation term for the entire tensor U [s] we model a perturbation
term for each of the components it was computed from. Although
the algorithm can be developed forR dimensions, for simplicity of
presentation we assume R = 2 and focus on the rst shift invari-
ance equation (r = 1). Moreover, the superscript [s] is dropped,
so that U [s] becomes U , S [s] becomes S , and U

[s]
r becomes U r .

Using these simpli cations we get U = S ×1 U 1 ×2 U 2 which
leads to three perturbation terms: ΔS ,ΔU 1, andΔU 2. The opti-
mization problem can then be formulated in the following fashion

min
Ψ

(1)
,ΔS ,ΔU 1,ΔU 2

{∣∣∣∣∣∣R(1)
∣∣∣∣∣∣2

H
+ κ

2
1 ||ΔU 1||

2
F

+κ2
2 ||ΔU 2||

2
F + κ2

3 ||ΔS||2H
}

,

(14)

R
(1) = (S + ΔS)×1

(
J

(1)
1 [U1 + ΔU1]

)
×2 [U2 + ΔU2]×3 Ψ

(1)

− (S + ΔS)×1

(
J

(1)
2 [U1 + ΔU1]

)
×2 [U2 + ΔU2] ,

where R(1) is the residual tensor and we now have three regu-
larization terms, one for each perturbation term we de ned. The
weighting factors κr are chosen in a manner similar to [4].

This nonlinear optimization problem can be solved by local
linearization in an iterative fashion. As a starting point we use the
LS solution for the matrix Ψ

(1) and zeros for all the perturbation
terms. The update equations in the k-th step are now given by

Ψ
(1)
k+1 = Ψ

(1)
k + ΔΨ

(1)
k

ΔSk+1 = ΔSk + ΔΔSk

ΔU 1,k+1 = ΔU 1,k + ΔΔU 1,k

ΔU 2,k+1 = ΔU 2,k + ΔΔU 2,k

⎡⎢⎢⎣
vec

{
ΔΨ

(1)
k

}
vec {ΔΔU 1,k}
vec {ΔΔU 2,k}
vec {ΔΔSk}

⎤⎥⎥⎦ = −F
+ ·

⎡⎢⎢⎣
vec

{
R

(1)
k

}
κ1 · vec {ΔU 1,k}
κ2 · vec {ΔU 2,k}
κ3 · vec {ΔSk}

⎤⎥⎥⎦
F =

⎡⎢⎢⎣
F

(1)
1 F

(1)
2 F

(1)
3 F

(1)
4

0 κ1 · IM1·p1 0 0

0 0 κ2 · IM2·p2 0

0 0 0 κ3 · Ip1·p2·d

⎤⎥⎥⎦
F

(1)
1 = P (3) ·

([
Sk ×1 J

(1)
1 U 1,k ×2 U 2,k

]T

(3)
⊗ Id

)
F

(1)
2 = P (1) ·

(([
Sk ×2 U 2,k ×3 Ψ

(1)
k

]T

(1)
⊗ J

(1)
1

)
−
(
[Sk ×2 U 2,k]T(1) ⊗ J

(1)
2

))
F

(1)
3 = P (2) ·

(([
Sk ×1 J

(1)
1 U 1,k ×3 Ψ

(1)
k

]T

(2)
⊗ IM2

)
−

([
Sk ×1 J

(1)
2 U 1,k

]T

(2)
⊗ IM2

))
F

(1)
4 = Ψ

(1)
k ⊗U 2,k ⊗ J

(1)
1 U 1,k − Id ⊗U 2,k ⊗ J

(1)
2 U 1,k

Sk = S + ΔSk, Un,k = Un + ΔUn,k, n = 1, 2,

i.e., in each iteration step we compute updates to the perturba-
tion terms as well as the unknown matrix Ψ

(1) by multiplying
the pseudo-inverse of the matrix F with a vector computed from
the previous perturbation terms and the current residual tensor (for
an ef cient implementation, the QR decomposition can be used).
These updates are then applied to the optimization variables for
the next iteration step. In the update equations P (n), n = 1, 2, 3
refers to the permutation matrices introduced in Section 2. For
r = 2, the rst and second mode are consistently exchanged

F
(2)
1 = P (3) ·

([
Sk ×1 U 1,k ×2 J

(2)
1 U 2,k

]T

(3)
⊗ Id

)
F

(2)
2 = P (1) ·

(([
Sk ×2 J

(2)
1 U 2,k ×3 Ψ

(2)
k

]T

(1)
⊗ IM2

)
−

([
Sk ×2 J

(2)
2 U 2,k

]T

(1)
⊗ IM2

))
F

(2)
3 = P (2) ·

(([
Sk ×1 U 1,k ×3 Ψ

(2)
k

]T

(2)
⊗ J

(2)
1

)
−
(
[Sk ×1 U 1,k]T(2) ⊗ J

(2)
2

))
F

(2)
4 = Ψ

(2)
k ⊗ J

(2)
1 U 2,k ⊗U 1,k − Id ⊗ J

(2)
2 U 2,k ⊗U 1,k.

Similarly to the matrix SLS algorithm, TS-SLS can be modi ed
to solve the R shift invariance equations jointly which leads to
the TS-RD-SLS algorithm. In this case we model the perturba-
tion terms to be equal for all the shift invariance equations. The
optimization variables are therefore the perturbation terms for the
core tensor and the singular vector matrices U r, r = 1, 2, . . . , R
and additionally the matrices Ψ

(r), r = 1, 2, . . . , R. The cost
function for the TS-RD-SLS algorithm is given by

R∑
r=1

∣∣∣∣∣∣R(r)
∣∣∣∣∣∣2

H
+

R∑
r=1

κ
2
r ||ΔU r||

2
F + κ

2
R+1 ||ΔS ||2H , (15)

whereR(r) is the residual tensor obtained by subtracting the right-
hand side of the r-th shift invariance equation from its left-hand
side. The iterative solution is very similar to the 1-D case. The
extended update equation takes the following form (R = 2 taken
as an example)⎡⎢⎢⎢⎢⎢⎣

vec
{
ΔΨ

(1)
k

}
vec

{
ΔΨ

(2)
k

}
vec

{
ΔΔU1,k

}
vec

{
ΔΔU2,k

}
vec {ΔΔSk}

⎤⎥⎥⎥⎥⎥⎦ = −F
+ ·

⎡⎢⎢⎢⎢⎢⎣
vec

{
R

(1)
k

}
vec

{
R

(2)
k

}
κ1 · vec

{
ΔU1,k

}
κ2 · vec

{
ΔU2,k

}
κ3 · vec {ΔSk}

⎤⎥⎥⎥⎥⎥⎦
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Fig. 1. RMSE vs. SNR for d = 3 correlated sources on a 3 × 3
URA,N = 10, μ1 = [1,−1]T , μ2 = [0, 1]T , μ3 = [−1, 0]T .
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Fig. 2. RMSE vs. SNR for d = 2 sources on a 5× 7 URA, single
snapshot (N = 1), μ1 = [1,−1]T , μ2 = [0, 1]T .

F =

⎡⎢⎢⎢⎢⎣
F

(1)
1 0 F

(1)
2 F

(1)
3 F

(1)
4

0 F
(2)
1 F

(2)
2 F

(2)
3 F

(2)
4

0 0 κ1 · IM1·p1
0 0

0 0 0 κ2 · IM2·p2
0

0 0 0 0 κ3 · Ip1·p2·d

⎤⎥⎥⎥⎥⎦ .

After solving the shift invariance equations, the eigenvalues of
Ψ

(r) can be computed jointly in order to achieve the correct pair-
ing of the spatial frequencies to the sources. This can be achieved
by a joint diagonalization scheme, e.g., the Simultaneous Schur
Decomposition [6].

6. SIMULATION RESULTS
In this section, the performance of the algorithms is compared
through computer simulations. In the rst simulation in Figure 1,
d = 3 sources with complex Gaussian distributed amplitudes and
a strong correlation of ρ = 0.9999 were captured by a 3 × 3 uni-
form rectangular array collecting N = 10 subsequent snapshots
for various values of the SNR at the receiver. The top two curves
show standard ESPRIT (SE) and its tensor version (STE) with LS
(see [10]). There is no improvement since for d ≥ max{M1, M2}
the improved signal subspace estimate is the same as in the matrix

approach [10]. This is also the case for the comparison of Uni-
tary ESPRIT (UE) with its tensor version (UTE), both with SLS.
The two curves below show the RMS estimation error of UTE with
TS-SLS and TS-RD-SLS, respectively, which provide a signi cant
gain.

For the simulation shown in Figure 2, a 5×7URAwithN = 1
snapshot was used for d = 2 sources emitting BPSK symbols.
Here we can observe the effect of the improved signal subspace
estimate in going from UE to UTE and the additional gain in using
TS-SLS or TS-RD-SLS.

In general, TS-SLS and TS-RD-SLS are bene cial in critical
scenarios, e.g., if the number of snapshots is small and/or if the
sources are highly correlated.

7. CONCLUSIONS
In this contribution, a novel approach to solve the shift invari-
ance equations of ESPRIT-type algorithms in tensor notation is
discussed. In addition to taking into account the structure of the
shift invariance equations, the TS-SLS algorithm exploits the spe-
cial structure of the signal subspace obtained through the HOSVD.
It therefore provides gains in addition to the ones obtained by the
tensor signal subspace estimation step.

TS-SLS can readily be generalized to TS-RD-SLS which
solves the R shift invariance equations jointly. A version of
TS-RD-SLS incorporating the modi cations to SLS discussed in
[7] was also implemented but in our simulations it showed no
advantage over TS-RD-SLS.

TS-SLS provides an improved performance especially in crit-
ical cases, e.g., for highly correlated sources or in cases where
the number of snapshots is small. This is still true in scenarios
where the improved signal subspace estimate is the same as the
subspace estimate from the matrix approach, i.e., if the number of
wavefronts exceeds the number of sensors in all the modes. This
behavior was also demonstrated through computer simulations.
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