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ABSTRACT
We present new array beampattern synthesis approaches via
semide nite relaxation (SDR) for arbitrary array. Compared
to the conventional approaches of using weight vectors at the
array output for array pattern synthesis, which we refer to
as the Vector Weighting Approaches (VWA), weight matrices
are used at the array output by MWA for much improved ex-
ibility for optimal array pattern synthesis, and globally opti-
mal solutions can be determined ef ciently due to convex op-
timization formulations. Numerical examples are presented
to show the excellent performance of MWA.
Index Terms – Array Signal Processing

1. INTRODUCTION

One of the fundamental problems in array signal processing is
array pattern synthesis. The conventional formulation for this
problem, which we referred to as the Vector Weighting Ap-
proaches (VWA), as shown in Fig. 1(a), is to design a vector
of complex-valued weights for the sensor outputs and coher-
ently sum up the weighted signals to form a desired beampat-
tern [1–3].
Recently, numerical approaches based on convex optimiza-

tion techniques for array pattern synthesis using VWA [1]
have received much attention, due to its capability of handling
more complicated design speci cations and that the global
optimal solutions can be obtained ef ciently. Their appli-
cations in data-independent VWA beampattern synthesis for
uniform linear array (ULA) were rst introduced by Lebret
et al [1]. However, the VWA based designs for non-uniform
linear arrays are non-convex and hence are NP-hard [2]. Var-
ious beampattern synthesis methods based on VWA for adap-
tive arrays have been considered (see, e.g., [3]) for linear ar-
rays and 2-D non-uniform arrays. However, a method that
can solve the inherent problems with the standard Capon’s
method, such as varying main-beam shape, unmanageable
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peak sidelobe level (PSL), and sensitivity to the model errors,
simultaneously according to prescribed parameters remains to
be explored.
In this paper, we present optimal array pattern synthesis

via Matrix Weighting Approaches (MWA), as shown in Fig.
1(b). The array geometry can be arbitrary. We focus on the
array power response designs which are of interest in many
applications including radar. Compared to the conventional
VWA, weight matrices are used by MWA for much improved
beampattern synthesis exibility. For several different ver-
sions of MWA designs we have considered, globally optimal
solutions can be determined ef ciently due to convex opti-
mization formulations. Numerical examples are presented to
show the superior performance of MWA compared with their
VWA counterparts.

2. PROBLEM FORMULATION

Consider an M -element array with an arbitrary array geom-
etry. Let s(n) denote the unknown waveform of a narrow-
band signal-of-interest (SOI), the received data model is given
by [1]:

y(n) = a(θ0)s(n) + e(n), n = 1, · · · , N, (1)

where y(n) is the nth received data vector, n = 1, · · · , N ,
with N denoting the snapshot number; a(θ0) is the array
steering vector, θ0 denote a generic source location param-
eter, and e(n) is the the noise and interference term.
In VWA, for a weight vector w = [w1, · · · , wm]T ∈

CM×1, the power response of the array as a function of θ is
the array beampattern [1]:

P (θ) = |w∗a(θ)|2 = a(θ)∗ww∗a(θ) = a(θ)∗Ta(θ), (2)

where the matrixT = ww∗ ∈ CM×M has rank one. In VWA
design problems, the variable to be designed is the weight
vector w, or equivalently, the weight matrix T subject to the
rank-one constraint. Due to the non-convexity of the rank-one
constraint [4], the general VWA design problems cannot be
solved in polynomial time and the solutions cannot be guar-
anteed to be globally optimal.
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In array pattern synthesis via MWA, we remove the rank-
1 constraint on T. The resulting formulation is actually the
Semide nite Relaxation (SDR) [4] of the corresponding VWA
formulation for the same beampattern synthesis problem. The
goal of MWA is to nd an optimal T ≥ 0 that gives a de-
sired array beampattern. Once T is determined, we letW =
Σ1/2U, where the columns of U are the eigenvectors of T,
the diagonal elements of Σ are the corresponding eigenval-
ues, and W = [w1, · · · ,wK ] ∈ CM×K , with wk denoting
the kth weight vector in Fig. 1(b). Then the array beampattern
of MWA is given by:

P (θ) = a∗(θ)Ta(θ) = a∗(θ)WW∗a(θ) =
K∑

k=1

|a∗(θ)wk|2 . (3)

Therefore, MWA can be viewed as a lter-bank approach. We
will consider two types of gain constraints : i) the total gain
constraint, which requires tr(T) = c, where c is some given
constant (note that tr(T) =

∑K
k=1 ‖wk‖2 and hence the total

gain constraint is the trace constraint on T); ii) the elemental
uniform gain constraint, i.e., Tmm = c/M , m = 1, · · · ,M ,
which requires that each antenna element contributes equal
gain to the array output. Both the constraints are linear in
T and hence easy to solve. We observe from examples that
the solved T is often low rank, which means that MWA will
not require much higher hardware implementation cost than
VWA.

3. DATA-ADAPTIVE MWA: AWESOME

Consider the data model in (1). Similar to the formulation
of the Capon’s beamformer [5], we aim at minimizing the
array output power under the constraint of unit power gain for
the SOI, and the constraints for the 3-dB main-beam width
as well as the PSL. We referred to the data adaptive MWA
as the Adaptive WEighting of Signals via One Matrix Entity
(AWESOME), which is formulated as follows:

min
T

tr(R̂T) (4)

subject to a∗(θ0)Ta(θ0) = 1, (5)
a∗(θi)Ta(θi) = 0.5, i = 1, 2, (6)
a∗(μl)Ta(μl) ≤ ς, μl ∈ Ψs, (7)
a∗(μl)Ta(μl) ≥ 0.5, μl ∈ (θ1, θ2), (8)
T ≥ 0. (9)

where θ0 is the location of the SOI, θ1 and θ2 are the pre-
scribed 3-dB points, ς is the desired PSL, Ψs denotes the
sidelobe region, the interval (θ1, θ2) is the 3-dB main-beam
region, and R̂ = 1

N

∑N
n=1 y(n)yH(n) is the sample covari-

ance matrix. The formulation in (4) is a Semi-De nite Pro-
gram (SDP) [1] and can be solved ef ciently via the SDP
solvers such as SeDuMi [6]. The estimated SOI power P̂s

can be computed via P̂s = tr(R̂T).

4. DATA-INDEPENDENT MWA

4.1. Beampattern Matching Design

Beampattern matching design aims at nding the matrixT ≥
0 such that P (θ) matches or rather approximates (in a mean-
squared error (MSE) sense) the desired beampattern Pd(β),
over the region of interest Ω (covered by a ne grid of points
{μl}L

l=1) under either the elemental uniform gain constraint
or the total gain constraint. The formulation is given by:

min
α,T

1
L

L∑

l=1

vl [αPd(μl)− a∗(μl)Ta(μl)]
2 (10)

subject to Tmm =
c

M
, m = 1, · · · ,M,

or tr(T) = c, (11)
T ≥ 0, (12)

where vl ≥ 0, l = 1, · · · , L, is the weighting factor for the
lth grid point. The scaling factor α is introduced since typ-
ically φ(θ) is given in a “normalized form”, and our inter-
est lies in approximating an appropriately scaled version of
φ(θ), not φ(θ) itself. By using techniques similar to those
used in [7], we can reformulate the beampattern matching de-
sign in (10) as a Semi-de nite Quadratic Programming (SQP)
problem [1], which can be ef ciently solved on a personal
computer using public domain software such as SeDuMi [6].

4.2. Minimum Sidelobe Level Design

In some applications, it is important to control the PSL of
the beampattern [3], while maintaining the shape of the main-
lobe. For such purposes, we will consider the following min-
imum sidelobe level design:

min
T

−t subject to (13)

a∗(θ0)Ta(θ0)− a∗(μp)Ta(μp) > t, μp ∈ Ψs (14)
|a∗(θ0)Ta(θ0)− a∗(μp)Ta(μp)| ≤ 0.5, μp ∈ Ψm(15)
0.5a∗(θ0)Ta(θ0)− a∗(θi)Ta(θi) = 0, i = 1, 2,(16)
Tmm = c/M, m = 1, · · · ,M, or tr(T) = c,(17)
T ≥ 0, (18)

where the main-beam is directed toward θ0, the prescribed 3-
dB angles are θ1 and θ2, the 3-dB main-beam region is Ψm

and the sidelobe region is Ψs. The formulation (13) is a SDP
[1] and can be solved ef ciently using SeDuMi [6].
The VMA counterparts can be readily modi ed from the

previously described designs by adding the constraint rank(T) =
1. However, due to the non-convexity of the rank constraint,
the problem becomes much harder to solve and no globally
optimal solution is guaranteed. In our numerical examples we
have used the Newton-like algorithm [4] to nd the rank-one
solution.
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4.3. Constant Beamwidth Design for Wideband Arrays

Beamformers with frequency-invariant main-beam widths are
desirable in many wideband signal processing applications,
such as aeroacoustics [8] and communications. One way to
achieve this goal is to apply frequency-dependent weights to
the sensor outputs. However, there is no systematic way to
design such shades, with various constraints, for non-uniform
arrays such as the Small Aperture Directional Array (SADA)
[8]. MWA can be readily applied to achieve constant beamwidth
beampattern designs for wideband arrays. For example, we
can use the minimum sidelobe level design of MWA by spec-
ifying a common 3-dB main-beam width for all frequency
bins, and then obtaining a weight matrix for each narrowband
frequency bin using (13). The resulting beampattern for each
frequency bin will have a constant main-beam width and the
lowest possible sidelobe level. The beampattern matching de-
sign of MWA and AWESOME can also be modi ed for con-
stant beamwidth design of wideband arrays.
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Fig. 1. Diagrams for (a): VWA; (b): MWA.
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(b): MWA, -16 dB PSL

−50 0 50
−80

−60

−40

−20

0

20

Angle (degree)

B
ea

m
p

at
te

rn
 (

d
B

)

(c): MWA, -40 dB PSL

Fig. 2. Beampatterns from 100 Monte Carlo trials via several
adaptive beamforming methods.
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Fig. 3. Power estimates for the SOI (a): versusN in the pres-
ence of a 2◦ steering angle error; (b): versus the correlation
coef cient between the SOI and the interference.
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Fig. 4. Beampattern matching design for 5-element MRA.
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Fig. 5. Minimum sidelobe level design for 10-element ULA.

5. NUMERICAL EXAMPLES

First we study the capability of AWESOME for maintaining
the main-beam shape and controlling the PSL. The beampat-
terns in Fig. 2 are obtained with 100 Monte-Carlo trials when
N = 50. The SOI power is 20 dB. One strong interference
with 60 dB power is present at 40◦. The data are simulated
for a 10-element half-wavelength spacing ULA using (1), and
the noise is assumed to be white complex Gaussian random
process with zero-mean and covariance matrix I. Fig. 2(a)
corresponds to the standard Capon beamformer [5], where the
PSL is as high as about -1 dB and the pointing location of the
main-beam varies from trial to trial. Fig. 2(b) corresponds to
AWESOME, with desired 3-dB points set to the same as the
standard Capon beamformer in one trial (i.e., −5.5◦ and 5◦).
AWESOME can effectively control the PSL to below -16 dB,
and maintain a constant main-beam shape from trial to trail.
If the PSL must be as low as, say, -40 dB, we must broaden
the desired 3-dB main-beam width to be between−7.35◦ and
7.35◦ for AWESOME due to the trade off between the PSL
and the main-beam width.
Second, we examine the robustness of AWESOME in the

presence of small sample size and steering angle error prob-
lems. The assumed SOI angle is 0◦ while the true angle is 2◦.
We change the interference power to 60 dB and all the other
parameters are the same as Fig. 2(c). Note from Figs. 3(a),
obtained from 100 Monte Carlo trails, that AWESOME and
RCB [5] yield much more accurate SOI power estimates than
the standard Capon beamformer.
The third example shows the performance of AWESOME

when the interference is correlated with the SOI. We change
the interference power to 50 dB, use the theoretical sample co-
variance matrixR, and keep all the other parameters same as
Fig. 2(c). AWESOME signi cantly outperforms both RCB
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(a): Shading, 8 KHz
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(b): Shading, 30 KHz
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(c): Shading, 65 KHz
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(d): MWA, 8 KHz
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(e): MWA, 30 KHz
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(f): MWA, 65 KHz

Fig. 6. Beampatterns for SADA at various frequencies (8, 30,
65 KHz).

[5] and the standard Capon beamformer, as shown in Fig.
3(b), obtained from 100 Monte Carlo trails, since the latter
two algorithms fail to function properly and AWESOME has
strict main-beam shape control.
Next, we consider the beampattern matching design in

(10) with the the 5-elementMinimumRedundancy Array (MRA),
which is a non-uniform linear array with the same physical
aperture as that of the 10-element ULA, under the elemental
uniform gain constraint with c = 1. The desired beampattern
has three pulses centered at −40◦, 0◦, and 40◦, each with a
width of 20◦. MWA can provide a much better beampattern
matching than VWA, as shown in Fig. 4. The red line corre-
sponds to the scaled desired beampattern.
Now we consider the minimum sidelobe level design in

(13) for the 10-element ULA. The main-beam is centered at
0◦ with θ1 = −10◦, θ2 = 10◦, and Ψs = [−90◦,−20◦] ∪
[20◦, 90◦]. Note from (5) that VWA fails to produce a proper
main-beam and that the PSL of the VWA beampattern is more
than 5 dB higher than that of MWA.
The last example shows the wideband constant beamwidth

design for SADA [8], which is used for aeroacoustic noise
measurement. The fact that SADA is a non-uniform 2-D array
and that it is for near- eld noise power measurements makes
the problem more challenging. Beampatterns are obtained
using the minimum sidelobe level design (13) under the to-
tal gain constraint. The 2-D beampatterns in Fig. 6 are the
contours of the 3-D beampatterns on a plane parallel to and
4 feet above the array. The radius of the desired 3-dB con-
tour for MWA is 4 inches. The beampatterns in Figs. 6(a)
– 6(c) are obtained by using VMA shaded by the frequency-
dependent weight vector, which is designed by trail-and-error
[8] to maintain a constant beamwidth within the frequency
band of 10 – 40 KHz. Note from Fig. 6 MWA is capable of

extending this constant beamwidth working frequency band
to 8 – 65 KHz.

6. CONCLUSIONS

We have presented a new approach for optimal array pattern
synthesis for an arbitrary array. By deploying a weighting
matrix (instead of a vector) at the array output, much im-
proved exibility for optimal array pattern synthesis can be
achieved, and globally optimal solutions can be determined
ef ciently due to convex optimization formulations. Numeri-
cal examples have been demonstrated that the data-adaptive
AWESOME allows for strict controls of main-beam shape
and peak sidelobe level while retaining the capability of adap-
tive nulling of strong interferences and jammers, that AWE-
SOME is robust against various modelling error, and that data-
independent MWA can achieve much better beampattern syn-
thesis compared to the VWA counterpart.
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