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ABSTRACT
A new 2×2 full-rate full-diversity space-time block code
(STBC) is proposed that satis es the non-vanishing determi-
nant property and offers a reduced computational complexity
as compared to the other existing full-rate codes. The perfor-
mance of our new STBC is shown to be comparable to that
of the best full-rate STBCs known so far. This performance
is achieved at the decoding complexity which is substantially
lower than that of the standard sphere decoder.

Index Terms— Full-rate full-diversity space-time codes,
non-vanishing determinant property, sphere decoder

1. INTRODUCTION

Space-time coding has emerged as an important approach to
improve the performance and capacity of multiple-input mul-
tiple-output (MIMO) communication systems. Space-time
codes ef ciently exploit the spatial diversity offered by the
use of multiple antennas at the transmitter and/or receiver.

Different approaches have been used to design STBC te-
chniques. The orthogonal STBCs (OSTBCs) proposed in [1]
and [2] achieve full diversity at a low maximum likelihood
(ML) decoding complexity, but their achievable rate is lim-
ited by the code orthogonality property. Full rate is achieved
by the STBCs of [3] but with no full diversity guarantee. The
vertical Bell Labs layered space-time (V-BLAST) scheme of
[4] offers full rate and simple decoding complexity but does
not provide any diversity gain. Recent approaches to design-
ing powerful STBCs have used number theory tools to de-
velop space-time codes that have full rate and full diversity
[5]-[8]. Unfortunately, the ML decoder complexity for these
codes may be rather high as they are based on sphere decod-
ing. The use of sub-optimal decoding schemes can achieve a
lower complexity but at the price of a signi cant reduction in
the performance.

In this paper, we address the problem of designing full-
rate STBCs that offer a reasonable tradeoff between the per-
formance and decoding complexity. A new 2×2 STBC is pro-
posed that exploits properties of the OSTBC generator matrix
to reduce the decoding complexity which lies for the proposed

code in between that of the symbol-by-symbol decoder and
the standard sphere decoder (which is used by all full-rate
space-time codes). Our code is shown to have non-vanishing
determinants and, therefore, achieves the diversity-multiplex-
ing gain tradeoff. Its performance is shown to be comparable
to the best full-rate STBCs known so far.

2. SYSTEMMODEL

Let us consider a Rayleigh quasi-static at fading MIMO cha-
nnel with Nt transmit and Nr receive antennas. The Nr × T
received data block can be modeled as [2]

Y =
√

SNR

Nt
HX + N (1)

where X is the Nt×T code matrix, H and N are the Nr×Nt

channel matrix and the Nr × T noise matrix, respectively,
whose entries are i.i.d. complex random variables with the pdf
CN (0, 1), SNR is the average signal-to-noise ratio at each
receive antenna, and T is the transmitted block length. We
further assume that the receiver has a perfect channel state
information (CSI), and that the K symbols sk, k = 1 . . . K
drawn from the M -QAM constellation are encoded to form
the matrix X as [3]

X =
K∑

k=1

(srkCk + sikDk) (2)

where srk and sik are the real and imaginary parts of sk, re-
spectively, {Ck}K

k=1 and {Dk}K
k=1 are two sets of complex

Nt × T matrices that have to be designed subject to the fol-
lowing constraint

K∑
k=1

tr
(
CH

k Ck + DH
k Dk

)
= 2TNt (3)

(·)H denotes the conjugate transpose, and tr(·) stands for the
trace of a matrix. The codebook produced by encoding the
symbols sk can be de ned as

X � {X1, . . . ,XL}
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where the cardinality of the codebook is L = MK . Therefore
the rate of transmission is R = log2 L

T bits per channel use
(bcu).

For any I×J matrix Z, let us de ne the “underline” oper-
ator which transforms this matrix into a 2IJ × 1 real column
vector as follows

Z � [Re {Z11} , Im {Z11} ,Re {Z21} , Im {Z21} ,

. . . ,Re {ZIJ} , Im {ZIJ}]T . (4)

Using (4), it can be shown [9] that (1) can be written as

Y =
√

SNR

Nt
HX + N (5)

where H = 1
2IT ⊗ (H ⊗ E + H∗ ⊗ E∗), E =

[
1 j
−j 1

]
,

j =
√−1, IT is the T × T identity matrix, ⊗ denotes the

Kronecker product, and (·)∗ stands for the complex conjugate.
Using (2) in (5), we have

X = Gs (6)

where the 2NtT × 2K real matrix

G �
[
C1 D1 · · ·CK DK

]
(7)

is the code generator matrix, and s is the underline version of
the symbol vector s = [s1 . . . sK ]T . The constraint in (3) is
now equivalent to

tr(GT
G) = 2TNt. (8)

If NrT ≥ K and H is full-rank, then the coherent ML
decoder is given by

ŝ = arg min
sl

‖Y − HGsl‖ (9)

where ‖ · ‖ is the Euclidean norm.
The latter decoder can be implemented using the sphere

decoding algorithm [10] which in most cases is much more
computationally ef cient than the exhaustive search.

We will call a lattice X = {X1, . . . ,XL} orthogonal if
the columns of the corresponding generator matrix G are or-
thogonal. Note that for the lattice of Y = {Y1, . . . ,YL} to
be orthogonal, it is not suf cient that X is orthogonal because
of the effect of randomness in the channel.

3. THE NEW SPACE-TIME CODE

Let us brie y discuss the OSTBCs rst. Any X is said to be
an OSTBC [2] if it is a linear combination of the K entries sk

and
XXH = ‖s‖2INt

. (10)

According to the constellation space invariance property of
OSTBCs [9], the orthogonality of the lattice remains invari-
ant to the skewing effects of the channel matrix, guaranteeing

that the coherent ML decoder can be implemented as a simple
symbol-by-symbol decoder.

Let us hereafter consider the case of Nt = T = 2 and
K = NtT = 4 so that the code has full rate at which no
OSTBC exists. To design such a code, we have to choose
2NtT = 2K linearly independent columns of G. To main-
tain the full rate restriction but, at the same time, to simplify
the complexity of the associated ML decoder, let us choose
as many rst columns of G as possible from an OSTBC (in
our particular 2 × 2 case from the Alamouti’s code [1]). By
doing so, we guarantee that, according to the constellation
space invariance property, the corresponding axes of the lat-
tice Y = {Y1, . . . ,YL} are orthogonal at the decoder. The
remaining columns of G are selected to be orthogonal to the
rst OSTBC-based columns. Additionally, we require the

matrix G to be orthogonal, i.e., G
T

G = GG
T = I2K. In [6],

it was shown that this property is a suf cient and necessary
condition for the code to be information-lossless. It can be
readily shown that if the last K = 4 columns gk, k = 1, 2, 3, 4
of the matrix

G = [GOSTBC g1 g2 g3 g4] (11)

are chosen as

gk = [g1k, g2k, g3k, g4k, g3k,−g4k,−g1k, g2k]T (12)

then for any glk (l = 1, 2, 3, 4; k = 1, 2, 3, 4) they are orthog-
onal to the rst K OSTBC-based columns, where GOSTBC is
the generator matrix of the Alamouti’s code.

Choosing the elements of the vectors gk (k = 1, 2, 3, 4),
we have to satisfy the following property:

gT
k gl =

{
1 for k = l
0 for k �= l

(13)

for all k = 1, 2, 3, 4 and l = 1, 2, 3, 4. According to (12), the
latter property is equivalent to

g̃T
k g̃l =

{
1/2 for k = l
0 for k �= l

(14)

where the 4 × 1 vector g̃k contains the four upper entries of
gk. We can satisfy (14) by introducing a 4 × 4 matrix

G̃ �
√

2 [g̃1 g̃2 g̃3 g̃4]. (15)

Note that G̃ is an orthogonal matrix and, therefore, it can be
parameterized using Givens rotations in the way proposed in
[11]. This gives us six degrees of freedom which can be used
to satisfy some desired performance criterion.

We have optimized our code using the well-known cri-
terion that, to achieve full diversity, all non-zero codeword
difference matrices must be full rank [12]. By maximizing
the absolute value of the worst codeword-difference matrix
determinant

min
X,X′∈X
X�=X′

δ(G̃) , δ(G̃) = |det (X − X′) |2 (16)
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Fig. 1. Code BERs versus SNR.

we ensure that the designed generator matrix will provide full
diversity with a high coding gain. To nd the values of the
angles used in the Givens rotations-based parameterization of
G̃, an extensive Monte-Carlo search was performed, followed
by local optimization around the resulting from this search
maximal value of the objective function. The constellation
was xed to be 4-QAM. As a result of our numerical opti-
mization, the following matrix G̃ has been found

G̃opt =
1√
7

⎡
⎢⎢⎣

−1 1 1 2
1 −2 1 1
1 1 2 −1
2 1 −1 1

⎤
⎥⎥⎦

with the optimal point of the objective function δ(G̃opt) =
16/7. We stress here that the resulting G̃opt has an intrigu-
ingly simple structure that we could not expect when formu-
lating the optimization problem in (16).

4. NON-VANISHING DETERMINANT PROPERTY

In this section, we establish the so-called non-vanishing deter-
minant (NVD) property for our code which means that δ ≥ c
for any constellation size, where c is a constant. The NVD
property has been established for several popular STBCs [5],
[7], [8], [13]-[15]. It has been proven that any space-time
code satisfying the latter property achieves the diversity-mu-
ltiplexing gain tradeoff not only in the Rayleigh fading chan-
nel case [8], [13], but also for an arbitrary fading distribution
[16].

The following theorem establishes the NVD property for
the proposed code.
Theorem 1: For the proposed space-time code, δ(G̃opt) ≥

16/7 provided that the information symbols are drawn from
any M -QAM or M -PAM constellation.
Proof: See [17]. �
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Fig. 2. Average number of points visited by the sphere de-
coder versus SNR.

As the established non-vanishing determinant property ho-
lds true for any M -QAM constellation, our code is expected
to provide a good performance for arbitrary M (even though
it has been designed for the particular 4-QAM case).

5. THE DECODER

Let us consider the sphere decoder presented in [10] which
is commonly used to implement the ML decoding procedure.
This sphere decoder conducts a search of possible candidates
of s by going through the axes of HG in a predetermined or-
der. We choose this order so that the axes belonging to the
OSTBC (i.e., corresponding to HGOSTBC) are the last ones
to be searched. In this way, after going through the rst K
axes using the sphere decoder, our decoding algorithm needs
to conduct a K-dimensional search for the remaining K axes.
As these remaining axes are de ned by HGOSTBC and, there-
fore, they are all orthogonal to each other, the search for the
remaining K dimensions is equivalent to simple symbol-by-
symbol decoding. Therefore, the last K stages of the sphere
decoder can be omitted and replaced by the much simpler
symbol-by-symbol decoder. This substantially reduces the
computational cost of the overall decoding procedure as com-
pared to the existing full-rate STBCs that use the sphere de-
coder to search over all 2K axes of the lattice.

6. SIMULATIONS

We have assumed a MIMO system with quasi-static at Ray-
leigh fading channel and Nt = Nr = T = 2. Figure 1
shows the bit error rate (BER) versus SNR for the proposed
STBC, the Golden code of [5], the code of [6], and the code
of [18]. All these codes have been tested for 4-QAM, 16-
QAM and 64-QAM constellations. As recommended in [18],
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the parameter of the latter code is chosen to be λ = 1/2 for
the 4-QAM constellation, and λ = π/6 for the 16-QAM and
64-QAM constellations. As can be seen from Figure 1, the
performance of the proposed code is nearly the same as of
the Golden code (which has the best performance among the
codes tested).

Figure 2 shows the average number of points visited by
the sphere decoder versus SNR for the STBCs tested in Figure
1. From Figure 2, it is clear that the proposed code offers a
reduced decoding complexity as compared to the other codes
tested. This reduction in complexity is especially pronounced
in a practically important SNR region of 0 to 15 dB.

7. CONCLUSIONS

A new 2×2 full-rate full-diversity information-lossless space-
time block code has been proposed. Our code has been shown
to satisfy the non-vanishing determinant property and, there-
fore, to achieve the diversity-multiplexing gain tradeoff. Our
simulation results have demonstrated that the proposed code
has a performance comparable to that of the best known full-
rate STBC schemes but, at the same time, enjoys a substan-
tially reduced decoding complexity with respect to these kno-
wn schemes.
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