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ABSTRACT

In this study, we consider the design of LDPC codes for coop-
erative relay systems in half-duplex mode (namely, “cheap” re-
lay) that are of practical interest. We transform the code design
problem into the design of rate-compatible LDPC codes where
the SNRs in different parts of one codeword are different. Due
to the SNR variation, the conventional density evolution (DE) or
extrinsic-mutual-information-transfer (EXIT) is not capable of ac-
curately predicting the code performance. We develop a more
refined definition of code ensembles and present a modified DE
based algorithm related to the new relay code structure. Our re-
sults show that the proposed algorithm is more accurate than the
conventional DE or EXIT in this case. We further employ the
code optimization based on differential evolution. The optimized
“cheap” relay code significantly outperforms existing codes.
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1. INTRODUCTION

Cooperative relay networks can provide not only “cooperative di-
versity” [1] but also higher transmission rates [2, 3], and thus, cod-
ing strategies that can improve the transmission rate of relay net-
works are of interest. The practical constraint for the wireless sys-
tems prohibits receiving and transmitting signals simultaneously
in the same frequency. Hence, the current commercial relays have
to work in half-duplex mode, namely, “cheap” relay [3].

LDPC code is a good candidate for capacity approaching in
“cheap” relay channels because of its excellent performance [4].
LDPC code design typically refers to the design of code ensem-
bles which characterizes a set of codewords sharing the same edge
statistics of the parity-check matrices, via DE or EXIT [5, 6]. The
design of rate-compatible LDPC codes have been studied in [7].
The existing rate-compatible LDPC code design employs the con-
ventional DE algorithm with the extra edge constraints imposed
due to the rate-compatible structure. Although the structure of
“cheap” relay codes is in parts similar to the rate-compatible code
structure, current design methods are not directly applicable be-
cause the SNR varies in different sub-blocks of one codeword, and
thus, the code design problem becomes much more challenging.

In this study, we treat the design of rate-compatible LDPC
code ensembles for “cheap” relay systems. We first present a new
definition of the LDPC code ensemble for the codes which experi-
ence different SNRs within one codeword. This corresponds to the
“cheap” relay scenario, as well as the ARQ scenario. Note that the
new code ensemble definition characterizes the parity-check ma-
trix in a more refined way. Based on this ensemble definition, we

propose a modified DE algorithm to predict the “cheap” relay code
performance. With this tool, the optimum ensemble of “cheap” re-
lay codes can be searched via a modified differential evolution [5],
where the rate-compatible constraints for “cheap” relay codes are
treated. Our results show that the proposed algorithm is more ac-
curate than the existing methods, and the optimized code achieves
significant gain over the existing codes in “cheap” relay systems.

The remainder of the report is organized as follows. Section 2
describes the “cheap” relay systems, and formulates the problem
of “cheap” relay code design. In Section 3, the entire framework
for the “cheap” relay code design is developed, including the new
ensemble definition for “cheap” relay codes, the modified DE al-
gorithm, and the nonlinear optimization algorithm. Simulation re-
sults are shown in Section 4. Section 5 draws the conclusions.

2. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a multiple-relay channel consist of a source node (S)

a destination node (D) and K relay nodes (R(i)). Let xS and x
(i)
R

be the transmit signals from the source and the relays, and hSD ,

h
(i)
SR and h

(i)
RD be the path gains between the source-destination,

source-relay, relay-destination, respectively. We consider half-
duplex relay operation where relays receive in the odd and transmit
in the even time slots. The received signals at R(i) and D are

y
(i)
R (2t − 1) = h

(i)
SRxS(2t − 1) + n

(i)
R (2t − 1), (1)

yD(2t − 1) = hSDxS(2t − 1) + nD(2t − 1), (2)

yD(2t) = hSDxS(2t) + hRDxR(2t) + nD(2t), (3)

where n
(i)
R , nD ∼ N (0, N0) denote the AWGNs.

During the odd time slot, S transmits a LDPC codeword w1,

i.e., xS(2t − 1) =
�

PS,1w1, where E{‖w1‖2} = 1. In the

case that D cannot successfully decode w1, R(i) attempts to de-

code w1 using (1), and then, S and R(i) cooperatively transmit
signals related to w1 during the even time slot. Assuming perfect

decoding at R(i), both of S and R(i) transmit the same bits we dur-

ing the even time slot, i.e., xS(2t) =
�

PS,2we and x
(i)
R (2t) =�

P
(i)
R we, 1 ≤ i ≤ K, where E{‖we‖2} = 1. Then the re-

ceived signals at D during the even time slot, (3), can be rewritten

as yD(2t) = (hSD

�
PS,2 +

�
i h

(i)
RD

�
P

(i)
R )we + nD(2t) =

h̃SDwe + nD(2t).

The proposed “cheap” relay code in the form of w2 =
[w1, we] can be interpreted as an extended LDPC code of the orig-
inal codeword w1 with extended bits we. Such a code structure
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allows for decoding of the code either as w1 or w1 with two dif-
ferent rates depending on the channel condition which defines a
rate-compatible code. Therefore, the problem is formulated as de-
signing an optimal code ensemble w1 (that has been extensively
studied in the current literature) and the optimal extension of the
code to the code ensemble w2 = [w1; we] by adding the extended
parity bits we. The rate-compatible LDPC code structure imposes
new constraints on the parity-check matrix of the code [7]. The

parity-check matrix H2 =

�
H1 O
A B

�
for the entire codeword

w2 contains the parity-check matrix for w1 (H1), non-zero sub-
matrices A and B, and zero sub-matrix O.

However, the main challenge in the “cheap” relay channel
code design is the fact that the average received power correspond-
ing to the two parts of the codeword w1 and we are in general
not equal. Specifically, the SNRs for the decoding of w1 and
we can be written, respectively, as γ1 = |hSD|2PS,1/N0 and

γ2 = |h̃SD|2/N0, where PS,1 + PS,2 +
�K

i=1 P
(i)
R ≤ PT with

PT being the maximum overall transmit power. As a result of SNR
variation in one codeword, the conventional DE or EXIT method
cannot accurately predict the code behavior.

3. CODE DESIGN OF “CHEAP” RELAY LDPC CODES

3.1. Code Ensemble for “Cheap” Relay LDPC Codes

As is well known, a parity-check matrix fully describes the corre-
sponding LDPC codeword. The code ensemble (i.e., edge distribu-
tion or node perspective) can be used to statistically characterize a
set of codewords which share the same edge distribution, and thus,
approximately have the same performance [5, 4]. Note that in the
existing analysis, the SNR within one codeword is assumed the
same, which applies in the block-fading or the fast-fading chan-
nels. However, for a “cheap” relay codeword, γ1 �= γ2 for w1

and we. As a result, the existing edge distribution is too rough for
the existing ensemble analysis methods to evaluate “cheap” relay
codes. Therefore, we propose a more refined definition as follows.

Let D
(k)
V and D

(k)
C be the maximum degrees of the variable

nodes and the check nodes, respectively, for the code wk, k = 1

and 2. Denote {λi,k}D
(k)
V

i=1 and {ρi,k}D
(k)
C

i=1 as the variable edge
distribution and the check edge distribution, respectively; denote

{ai,k}D
(k)
V

i=1 and {bi,k}D
(k)
C

i=1 as the variable node perspective and the
check node perspective, respectively. Suppose that one “cheap” re-
lay codeword experiences two different SNRs, i.e., γ1 �= γ2. For
the code w2, we then have the following new ensemble definitions.
Define π1(i) as the probability of a variable node which has a de-
gree of i and falls in the region of w1 (i.e., H1 and A), namely,
region-1. Consequently, π2(i) = 1 − π1(i) denotes the probabil-
ity of the node falling in region-2 (i.e., B and O for we). Clearly,

the probability set {π1(i), π2(i)}D
(2)
V

i=2 should satisfy the following

constraint:
�D

(2)
V

i=1 π1(i)ai,2 = R2
R1

or
�D

(2)
V

i=1 π2(i)ai,2 = 1− R2
R1

,

where Rl denotes the rate of wl, l = 1, 2. Then define the edge

distribution within region-l, l = 1 and 2, as {λ(l)
i,2, l = 1, 2}D

(2)
V

i=1

where λ
(l)
i,2 =

πl(i)λi,2

�D
(2)
V

j=1 πl(j)λj,2

, l = 1, 2. Obviously, the new code

ensemble of w2, {{λ(1)
i,2 , λ

(2)
i,2}

D
(2)
V

i=2 , {ρj,2}D
(2)
C

j=2 }, depends on both
the overall code ensemble {{λi,2}i, {ρj,2}j} and the node prob-

ability set {π1(i), π2(i)}D
(2)
V

i=2 . Then for each overall code ensem-
ble {{λi,2}i, {ρj,2}j}, there are a number of possible new code

ensembles
�
{λ(1)

i,2 , λ
(2)
i,2}i, {ρi,2}j

�
, each of which can be fully

determined by one node probability set {π1(i), π2(i)}i. Note that
the above new code ensemble describes the parity-check matrix
of w2 in a more refined manner in the sense that the edge distri-
butions within region-1 and region-2 can be described separately.
Also note that the “cheap” relay codewords with the same over-
all code ensemble {{λi,2}i, {ρj,2}j} but different probability set
{π1(i), π2(i)}i typically have different performances.

3.2. Ensemble Performance Analysis of “Cheap” Relay Codes

As we mentioned in Section 3.1 and will demonstrate in Sec-
tion 4, the fact γ1 �= γ2 makes the existing methods based on the
overall edge distribution {{λi,2}i, {ρj,2}j}, DE [5, 4] or EXIT
chart [8, 6], not very accurate in performance prediction. We next
develop an iterative algorithm to evaluate the “cheap” relay code

based on the new code ensemble {{λ(1)
i,2 , λ

(2)
i,2}i, {ρj,2}j}. The

main difference between this approach and the conventional DE
approaches is that instead of assuming equal density function for
the entire codeword, we treat different density functions separately
for the two different region-l, l = 1, 2. For notational convenience,
hereafter in Section 3.2, we drop the subscript “2” in those quan-
tities for the codeword w2. Fig. 1 shows the general structure for
iterative decoding of LDPC codes [6]. The variable node decoder
(VND) denotes a repetition code decoder; the check node decoder
(CND) denotes a single parity-check code decoder.
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decoder
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check node
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-

edge interleaver/
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decision
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L
E,VND

L
A,VND

L
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L
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Fig. 1. Diagram of the iterative LDPC decoding structure.

VND process: The VND output LLR for a node with degree i
is, in general, given by LE,V (i) = L0 +

�
j �=i LA,V (j), where

L0 ∼ N (m0, σ
2
0) denotes the VND input LLR from channel, and

the mean m0 = 2γ0 depends on the channel SNR γ0. Note that
LE,V (i) in region-1 and region-2 are different since γ1 �= γ2.
Denote the quantities with superscript (l) as those for region-l,
l = 1, 2. In particular, the VND output LLRs of a node with de-

gree i for region-1 and region-2 are given, respectively, L
(1)
E,V (i) =

L
(1)
0 +

�
j �=i L

(1)
A,V (j) and L

(2)
E,V (i) = L

(2)
0 +

�
j �=i LA,V (j),

where L
(1)
0 ∼ N (m

(1)
0 , σ

(1)
0 ) and L

(2)
0 ∼ N (m

(2)
0 , σ

(2)
0 ) cor-

respond to the detector outputs; m
(1)
0 = 2γ1 and m

(2)
0 = 2γ2;

L
(l)
A,V (j) are i.i.d. symmetric Gaussian random variables, i.e.,

L
(l)
A,V (j) ∼ N (m

(l)
C , 2m

(l)
C ), l = 1, 2, and will detailed later in

this section. Then L
(l)
E,V (i), l = 1, 2, can be well approximated by

a symmetric Gaussian random variable [5, 4],

N (m
(l)
0 + (i − 1)m

(l)
C� �� 	

m
(l)
V

(i)

, 2(m
(l)
0 + (i − 1)m

(l)
C )). (4)
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Thus, the averaged VND output LLR per edge (for l = 1, 2) has
the Gaussian mixture density function:

f
(l)
V =

�
i

λ
(l)
i N (m

(l)
V (i), 2m

(l)
V (i)) = N (m

(l)
V , 2m

(l)
V ), (5)

where {λ(l)
i }i denotes the variable edge distribution in region-l.

CND process: The CND output LLR of a node with degree

i is given by LE,C(i) = 2 arg tanh(
�

j �=i tanh(
LA,C(j)

2
)),

where LA,C(j) denotes the CND input LLRs coming from
the VND output edges. Taking expectation over each side,

we have E{tanh(
LE,C(i)

2
)} = E{�j �=i tanh(

LA,C(j)

2
)} =�

j �=i E{tanh(
LA,C(j)

2
)}, where the second equality follows

the fact that LA,C(j) is independently distributed. Note that
LE,C(j) in region-1 and region-2 also have different density

functions because f
(1)
V �= f

(2)
V as revealed in (4) and (5).

Then the CND output LLRs in region-1 satisfy: ψ(m
(1)
C (i)) =�

ψ(m
(1)
V )
�di,1−1 �

ψ(m
(2)
V )
�di,2

, where ψ(x) � E{tanh(y/2)}
with y ∼ N (x, 2x); the second equality comes from the fact that

L
(l)
A,C(j) are i.i.d. within region-l; di,l, l = 1, 2, denotes the num-

ber of CND input edges coming from region-l, which is defined

as di,l = iPl with Pl � iaiπl(i)
�DV

j=2 jaj

denoting the proportion of the

number of edges falling within region-l. Furthermore, using the
mixture Gaussian density function in (5), the mean of CND output

LLRs in region-1, m
(1)
C (i), is given by

ψ−1([ψ(
�

j

λ
(1)
j m

(1)
V (i))]di,1−1[ψ(

�
j

λ
(2)
j m

(2)
V (i))]di,2). (6)

Similarly, then mean of the CND output LLRs within region-2,

m
(2)
C (i), can then be written as

ψ−1([ψ(
�

j

λ
(1)
j m

(1)
V (i))]di,1 [ψ(

�
j

λ
(2)
j m

(2)
V (i))]di,2−1). (7)

Using (6) and (7), the mixture Gaussian density functions of CND
outputs are given by

f
(l)
C =

�
i

ρiN (m
(l)
C (i), 2m

(l)
C (i)) = N (m

(l)
C , 2m

(l)
C ), (8)

where l = 1, 2, and {ρi}i denotes the overall check distribution.
Our proposed new performance prediction algorithm can be

summarized as follows. Calculate m
(l)
V (i) using (4); calculate

m
(l)
C (i) using (6) and (7); then calculate m

(l)
C using (8); repeat

the above procedures until a certain iteration number is reached.

3.3. Optimization of “Cheap” Relay Code Ensemble

Note that the code ensemble optimization based on the differen-
tial evolution [5] can also be employed to find the optimum code

ensemble {{λ(1)
i,2 , λ

(2)
i,2}i, {ρj,2}j} for the “cheap” relay code w2

which is an extended LDPC code of the original one w1. Then the
ensemble optimization procedures can be summarized as follows.

[Algorithm 1] Ensemble optimization

(a) Initialization:
given the original LDPC code with a rate of R1 and an

ensemble of {{λi,1}D
(1)
V

i=1 , {ρj,1}D
(1)
C

j }, generate N codes

each of which has a rate of R2 and an ensemble of

C(n) = {{λ(1)
i,2 (n), λ

(2)
i,2 (n)}D

(2)
V

i=1 , {ρj,2(n)}D
(2)
C

j=1 }, n =
1, 2, · · · , N .

(b) Code ensemble evaluation:
evaluate each code ensemble C(n); and find the optimum
code ensemble C∗ = arg max1≤i≤N mdec(n), where

C∗ = {{λ∗
i,2, λ

∗
i,2}D

(2)
V

i=1 , {ρ∗
j,2}D

(2)
C

j=1 }, and mdec(n) is the
mean of the decoder output for C(n).

(c) Code ensemble updating:
randomly choose Ñ ensembles out of {C(n)}N

n=1, denoted

by C̃(k) = {{λ̃i,2(k), λ̃i,2(k)}D
(2)
V

i=1 , {ρ̃j,2(k)}D
(2)
C

j=1 }, k =

1, · · · , Ñ ; and then, update the n-th ensemble by C(n) =

C∗ +α
�Ñ

k=1(−1)k−1C̃(k), where α < 1 is the step size.

(d) Repeat step (c) to update all code ensembles C(n).

(e) If the iteration number exceeds a predefined maximum iter-
ation number, then stop; otherwise, go back to step (b).

In Step (a), to generate new code ensembles using the original
ensemble, some additional rate-compatible constraints have to be
treated as follows. The overall edge distribution and node perspec-

tive of w2, {λi,2, ai,2}D
(2)
V

i=1 and {ρj,2, bj,2}D
(2)
C

j=1 , satisfy [5]:

���������
�������	

λ2,2 = 1 −�D
(2)
V

j=3 λj,2, and ρ2,2 = 1 −�D
(2)
C

j=3 ρj,2,

λ
D

(2)
V

,2
=

R2
2
�D

(2)
C

j=3 ( 1
j
− 1

2 )−(1−R2)
�D

(2)
V

−1
j=3 ( 1

j
− 1

2 )

(1−R2)( 1

D
(2)
V

− 1
2 )

,

ai,2 =
λi,2

i

�D
(2)
V

j=2
λj,2

j

, and bi,2 =
ρi,2

i

�D
(2)
C

j=2
ρj,2

j

.

(9)

Further consider the rate-compatible structure of the parity-check
matrix H2. Since O is a zero sub-matrix, the overall check node

perspective {bi,2}D
(2)
C

i=1 of H2 and the overall check node per-

spective {bi,1}D
(1)
C

i=1 of H1 satisfy the constraints [7]: bi,2M2 ≥
bi,1M1, i.e., bi,2 ≥ M1

M2
bi,1 = (1−R1)N1

(1−R2)N2
bi,1 = (1−R1)R2

(1−R2)R1
bi,1 =

Γbi,1, i = 2, 3, · · · , D(1)
C where the first equality follows the fact

1 − Ri = Mi
Ni

and the second equality comes from the inherent

rate-compatible property, R1N1 = N1 − M1 = N2 − M2 =
R2N2. Then using (9), the node perspective constraints can be
equivalently transformed into the corresponding edge distribu-

tion constraints
ρi,2/i

�D
(2)
C

j=2 ρj,2/j

≥ Γbi,1, i.e.,
ρi,2

i
≥ Γbi,1[

1
2

+

�D
(2)
C

j=3 ρj,2(
1
j
− 1

2
)], i = 2, 3, · · · , D(1)

C . For the case of

i = 2, using ρ2,2 = 1 −�D
(2)
C

j=3 ρj,2 in (9), we further have

1−Γb2,1
2

≥ �D
(2)
C

j=3
ρj,2
2

+ Γb2,1[
�D

(2)
C

j=3 ρj,2(
1
j
− 1

2
)]. On the

other hand, the overall variable node perspective {ai,2}D
(2)
V

i=1 of H2

and {ai,1}D
(1)
V

i=1 of H1 satisfy the constraints [7]:
�D

(2)
V

k=l ak,2 ≥
N1
N2

�D
(1)
V

k=l ak,1 = R2
R1

�D
(1)
V

k=l ak,1 = Υ
�D

(1)
V

k=l ak,1, l =

2, 3, · · · , D(1)
V . Then using (9), the node constraints can be equiv-

alently transformed into the edge constraints:
�D

(2)
V

k=l

λk,2
k

≥

(Υ
�D

(1)
V

k=l ak,1)(
1
2+
�D

(2)
C

k=3 ρk,2( 1
k
− 1

2 )

1−R2
), l = 2, 3, · · · , D(1)

V .

II ­ 875



code-1 structure-1 structure-2 structure-3
Algorithm 1 0.64dB 0.82dB 0.92dB

Simulation 0.87dB 0.99dB 1.32dB

DE 1.24dB 2.52dB 3.32dB

EXIT 1.07dB 2.61dB 3.01dB

Table 1. EbN0 threshold comparison among Algorithm 1 and the
existing DE and EXIT chart approaches: 1/2-rate codes; γ2 =
2γ1; N2 = 2N1.

optimized code repetition with code-1

Prediction −2.90dB −2.34dB

Simulation −2.33dB −1.80dB

Table 2. EbN0 threshold of the optimized “cheap” relay code.

In Step (b), the performance of each code ensemble C(n) =

{{λ(1)
i,2 (n), λ

(2)
i,2 (n)}D

(2)
V

i=2 , {ρi,2(n)}D
(2)
C

i=2 } need to be evaluated.

Hence, we need to obtain {λ(1)
i,2 (n), λ

(2)
i,2 (n)}D

(2)
V

i=2 for the given
overall code ensemble {{λi,2}i, {ρj,2}j}. As we discussed in
Section 3.1, for a given overall edge distribution {λi,2, ρj,2}i,j ,

the edge distribution {λ(1)
i,2 (n), λ

(2)
i,2 (n)}D

(2)
V

i=2 fully depends on the
node probability set {π1(i), π2(i)}i, which is not unique and cor-
responds to a specific structure of the parity-check matrix.

4. SIMULATION RESULTS

Evaluation of “cheap” relay codes: We now show some compar-
isons between the new and existing algorithms. The averaged SNR
within w1 is 3dB less than that within the other half codeword, i.e.,
γ2 = 2γ1 and N2 = 2N1. We consider a rate 1/2 code (code-1)
with λ(x) = 0.2124x2 + 0.1985x3 + 0.0084x5 + 0.0560x6 +
0.0142x7 +0.1665x8 +0.0091x9 +0.0200x10 +0.0025x20, and
ρ = 1 and the node probability sets π1(i) = 0.5; 1 ≤ i ≤ D

(2)
V ,

π1(2) = 1; π1(3) = 0.0745, and π1(3) = 0.9255, π(5) = · · · =
π(30) = 1 for three structures 1, 2, and 3, respectively. Code
length is N2 = 40000. The results in Table 1 show that our al-
gorithm more accurately predict the code performance than DE or
EXIT. It is seen that the more the complexity of the edge distri-
bution, the more the gap between the predicted threshold by con-
ventional DE and EXIT versus the actual performance. The good
prediction achieved by the proposed algorithm is very important,
for the optimization of the cheap relay channel typically results in
complicated edge distributions.

Optimized ensemble of the “cheap” relay code: Next we show
the performance of Algorithm 1. The normalized distance between
S and D is d = 0.25; PS,1 = PT /2 and PS2 = PR = PT /4;

R1 = 1/2 and R2 = 1/4; since D
(1)
V = 30, we set D

(2)
V = 33.

Code-1 above is used for w1, which is actually the optimum LDPC
code for AWGN channels. The performance of the optimized re-
lay code is shown in Table 2. As a comparison, the repetition
scheme using code-1 is adopted here, i.e., during S transmits w1

(code-1), and then, S and R transmit the same code we = w1.
Fig. 2 shows the BER performance of the optimized code and the
above repetition scheme with different code lengths. It is seen that
the optimized code can achieve a significant gain (0.5dB) over the
repetition scheme with the optimum AWGN code.
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E
b
N

0
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B
E

R
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AWGN code: N1=100000
AWGN code: N1=40000
AWGN code: N1=20000

Fig. 2. BER performance comparison.

5. CONCLUSIONS

In this study, we treated the LDPC code design for “cheap” re-
lay systems. We have presented the new definition of the LDPC
code ensemble, based on which we have developed the DE based
algorithm to predict the “cheap” relay code performance. Further
considering the specific rate-compatible edge constraints, we have
employed the optimization framework based on differential evolu-
tion to find the optimum code ensemble. We have shown that the
proposed algorithm is more accurate than the existing methods,
and the optimized code outperforms the existing AWGN codes.
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