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ABSTRACT

The problem of joint channel and carrier frequency offset (CFO) es-
timation is addressed in the context of multiple-input multiple-output
(MIMO) communications using orthogonal space-time-block codes
(OSTBCs). A new semiblind method is proposed to jointly estimate
the channel matrix and the CFO parameter. Our method blindly es-
timates the CFO parameter along with a low-dimensional subspace
where the channel is located, and then uses a few training blocks to
extract the channel parameters from this subspace.

Index Terms— Channel and frequency offset estimation, MIMO
systems, orthogonal space-time block codes

1. INTRODUCTION

Space-time coding has recently gained a signi cant interest because
of its ability to combat fading via exploiting spatial diversity offered
by multiple-input multiple-output (MIMO) communications [1]-[3].

Among numerous space-time coding schemes proposed so far,
orthogonal space-time codes (OSTBCs) are of a particular interest
due to their ability to enable full diversity at a low decoding com-
plexity. Speci cally, the optimal maximum likelihood (ML) OSTBC
decoder consists of a simple linear matched lter (MF) receiver fol-
lowed by a symbol-by-symbol decoder. It has recently been demon-
strated that for the majority of OSTBCs, the channel is blindly iden-
ti able [4], [5]. Therefore, using OSTBCs as the underlying space-
time coding scheme can potentially reduce the amount of transmitted
training symbols and improve the system bandwidth ef ciency.

Using the at fading channel assumption, a blind method has
been presented in [5] to estimate the channel matrix. However, the
technique of [5] assumes that no carrier frequency offset (CFO) is
present between the transmitter and receiver. Unfortunately, the lat-
ter assumption may be violated in practice. For example, even in the
case of perfect frequency synchronization between the transmitter
and receiver, frequency offsets can be caused by mobility-induced
Doppler effects.

The CFO estimation problem has been recently studied in appli-
cation to different communication schemes such as training-based
MIMO systems [6], and orthogonal frequency-division multiplexing
(OFDM)-based SISO and MIMO systems [7], [8].

In [9], we have developed a computationally ef cient blind me-
thod to jointly estimate the channel matrix and the CFO parameter
in orthogonally block coded MIMO systems. Although our method
is applicable to the majority of OSTBCs, there are a few codes (in-
cluding the celebrated Alamouti’s code [2]) that suffer from an in-
trinsic ambiguity in joint channel, CFO, and symbol estimation. For
such OSTBCs, the method of [9] is not applicable. In this paper,

we develop a semiblind modi cation of the technique of [9] that re-
solves the aforementioned estimation ambiguity by means of using
a few training blocks. The proposed technique can be also applied
to MIMO-OFDM systems [7], [8].

2. BACKGROUND

The input-output relationship for a MIMO system with N transmit
and M receive antennas and at block-fading channel can be ex-
pressed as [10]

y(t) = ejωotx(t)H+ v(t)

where y(t) = [y1(t) · · · yM (t)], x(t) = [x1(t) · · · xN (t)], and
v(t) = [v1(t) · · · vM (t)] are the complex row vectors of the re-
ceived signal, transmitted signal, and additive noise, respectively, ωo
is the CFO between the transmitter and receiver, andH is theN×M
complex channel matrix. It is assumed that the noise is spatially and
temporally white complex Gaussian with variance σ2.

Assuming a block transmission scheme with block length T , the
signal model for the nth received data block can be written as [9]

Y(n) = D(n, ωo)X(n)H+V(n) (1)

where

Y(n) �
[
yT ((n− 1)T + 1) · · · yT (nT )

]T
X(n) �

[
xT ((n− 1)T + 1) · · · xT (nT )

]T
V(n) �

[
vT ((n− 1)T + 1) · · · vT (nT )

]T
are the nth blocks of the received signals, transmitted signals, and
additive noise, respectively, (·)T is the transpose operator, and the
T × T complex diagonal matrix D(n, ωo) is de ned as

D(n, ωo) � diag
{
ejωo((n−1)T+1) · · · ejωo(nT )

}
.

The slow fading channel case is considered, i.e., the channel coher-
ence time is assumed to be substantially larger than the data block
length T .

The T × N matrix X(s(n)) is called an OSTBC [3] if all ele-
ments of X(s(n)) are linear functions of the K complex variables
s1(n), s2(n), . . . , sK(n) and their complex conjugates, and if for
any arbitrary s(n), X(s(n)) satis es

XH(s(n))X(s(n)) = ‖s(n)‖2IN
where s(n) is the nth symbol vector of the lengthK, IN is theN ×
N identity matrix, ‖ · ‖ is the Euclidean norm, and (·)H denotes the
Hermitian transpose.

II  8691424407281/07/$20.00 ©2007 IEEE ICASSP 2007



It follows from the de nition of OSTBCs that X(s(n)) can be
written as [11], [12]

X(s(n)) =

K∑
k=1

(CkRe{sk(n)} +Ck+KIm{sk(n)}) (2)

where

Ck �

⎧⎨
⎩

X(ek) , for 1 ≤ k ≤ K

X(jek) , for K < k ≤ 2K

Re{·} and Im{·} denote the real and imaginary parts, respectively,
j =

√−1, and ek is a vector of conformable dimension that contains
one in its kth entry and zeros elsewhere. In fact, any OSTBC is
completely de ned by its basis matrices {Ck}K

k=1 [12].
Let us de ne the “underline” operator for any matrix P as [5]

P �
[

vec{Re(P)}
vec{Im(P)}

]
(3)

where vec{·} is the vectorization operator stacking all columns of a
matrix on top of each other.

If there is no CFO (i.e., ωo = 0), then, using (2) and (3), the
model in (1) can be reformulated as [12]

z(n) � Y(n) = A(H)g(n) + ν(n) (4)

where

g(n) � s(n)

ν(n) � V(n)

and the 2MT × 2K real matrix A(H) is given by

A(H) = [C1H C2H · · · C2KH ] .

It can be readily veri ed that, regardless of the value of the chan-
nel matrix H, the matrix A(H) satis es the so-called decoupling
property, i.e., its columns have identical norms and are orthogonal
to each other [12]:

AT (H)A(H) = ‖H‖2F I2K
where ‖ · ‖F denotes the Frobenius norm.

In the presence of CFO, the matrix

X̃(n, ωo, s(n)) � D(n, ωo)X(s(n))

is a legitimate OSTBC regardless of the value ofω0, because it obeys
the orthogonality property [9]:

X̃H(n, ωo, s(n))X̃(n, ωo, s(n)) = ‖s(n)‖2IN .
It can be readily veri ed that

X̃(n, ωo, s(n))

=

K∑
k=1

(
C̃k(n, ωo)Re{sk(n)} + C̃k+K(n, ωo)Im{sk(n)}

)

where
C̃k(n, ωo) � D(n, ωo)Ck.

Note that the basis matrices {C̃k(n, ω0)}2Kk=1 of X̃(n, ωo, s(n)) are
time varying. Because of this, X̃(n, ωo, s(n)) is termed in [9] a
time-varying OSTBC.

Using (5), we have that in the presence of CFO, (4) should be
modi ed as

z(n) = A(n, ωo,H)g(n) + ν(n)

where

A(n, ωo,H) � [C̃1(n, ωo)H · · · C̃2K(n, ωo)H ] .

As X̃(n, ωo, s(n)) is a legitimate OSTBC, the matrix A(n, ωo,H)
satis es the decoupling property regardless of the values of n and
ωo, that is,

AT (n, ωo,H)A(n, ωo,H) = ‖H‖2F I2K .
De ning an equivalent channel vector as h � H, let us (with a
small abuse of notation) replace A(n, ωo,H) by A(n, ωo,h). As
A(n, ωo,h) is linear in h, we have [9]

vec{A(n, ωo,h)} = Φ(n, ωo)h

whereΦ(n, ωo) is a 4KMT ×2MN matrix whose kth column can
be de ned as

[Φ(n, ωo)]k � vec{A(n, ωo, ek)}
where [·]k denotes the kth column of a matrix and ek is the kth
column of the identity matrix I2MN .

Let nB data blocks be available for each channel realization.
Treating the channel vector h, the CFO parameter ωo, and the in-
formation symbols {g(n)}nB

n=1 as unknown deterministic parame-
ters, the ML approach was used in [9] to jointly estimate these pa-
rameters. To obtain the ML estimates of all these parameters, the
log-likelihood (LL) function has to be maximized. As a result, the
parameter estimates can be obtained by solving the following opti-
mization problem:

max
ωo,h,S∈Ω

log f
(
z(1), . . . , z(nB) |S, h, ωo

)
(5)

where f
(
z(1), . . . , z(nB) |S, h, ωo

)
is the likelihood function co-

mputed for the nB snapshots {z(n)}nB
n=1,

S � [g(1) g(2) · · · g(nB)]

and Ω is the nite set of all possible values of S. As the computa-
tional cost of solving (5) grows exponentially in nB , the optimiza-
tion problem in (5) has been simpli ed in [9] by relaxing the nite
alphabet constraint S ∈ Ω. That is, it has been assumed in [9] that
S ∈ R2K×nB . Using such a relaxation, the CFO estimate ω̂0 can be
obtained as [9]

ω̂o = argmax
ωo

λmax {Ψ(ωo)} (6)

where λmax{·} denotes the largest eigenvalue of a matrix, the matrix
Ψ(ωo) is de ned as

Ψ(ωo) �
nB∑
n=1

ΦT (n, ωo)
(
I2K ⊗ z(n)zT (n)

)
Φ(n, ωo)

and ⊗ denotes the Kronecker product. Furthermore, given the esti-
mate of ωo, the channel vector estimate can be computed as [9]

ĥ = P {Ψ(ω̂o)} (7)

where P{·} denotes the principal eigenvector of a matrix.
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Once the CFO parameter and the channel vector are estimated
using (6) and (7), respectively, the information symbols can be stra-
ightforwardly decoded by using the channel and CFO estimates in
the well-known linear MF receiver [9].

It should be stressed that the channel estimate in (7) suffers from
a real scalar ambiguity because the norm of the channel remains un-
known. Therefore, the aforementioned blind channel/CFO method
of [9] is not applicable to non-constant modulus constellations. Fur-
thermore, this technique suffers from an intrinsic ambiguity in joint
channel, CFO, and symbol estimation for several important OST-
BCs including the celebrated Alamouti’s code. As a result, the blind
method of [9] is not applicable to such codes.

In the next section, we show how the training approach can be
combined with the blind technique of [9] to resolve the aforemen-
tioned ambiguity using a small number of training blocks.

3. SEMIBLIND JOINT CHANNEL AND CFO ESTIMATION

The estimate of (7) in the previous section is based on the assumption
that the largest eigenvalue of Ψ(ω̂o) has no multiplicity. Although
this assumption holds true for the majority of OSTBCs, there are
several exceptions [5] that include the Alamouti’s code. For those
speci c OSTBCs, h belongs to the subspace spanned by the corre-
sponding multiple principal eigenvectors ofΨ(ω̂o). For this case, let
us develop a semiblind method to estimate the channel vectorh from
the aforementioned subspace based on a few training blocks. Let the
multiplicity order of the largest eigenvalue ofΨ(ω̂o) be no > 1 and
the corresponding orthonormal principal eigenvectors be {ul}no

l=1.
As h belongs to the subspace spanned by {ul}no

l=1, we have

h =

no∑
l=1

αlul = Uα (8)

where

U � [u1 u2 · · · uno ]

α � [α1 α2 · · · αno ]
T .

The key idea of the proposed semiblind approach is to obtain the
estimate of U blindly, while estimating the vector α using train-
ing symbols. As the number of entries in α is much smaller than
that in h, such semiblind estimator will require much less training
data blocks than the direct training-based channel estimator which
obtains all entries of h in a non-blind way.

Assuming that the rst nT blocks contain training symbols and
using (8), for any ith training block (i = 1 . . . , nT ), it can be readliy
veri ed that

z(i) = B(i, ω0,g(i))Uα+ ν(i) (9)

where the kth column of a 2MT × 2MN real-valued matrix
B(i, ω0,g(i)) is de ned as

[B(i, ω0,g(i))]k � A(i, ω0, ek)g(i) .

De ning

r � [zT (1) · · · zT (nT )]T

ξ � [νT (1) · · · νT (nT )]T

Q � [UTBT (1, ω0,g(1)) · · · UTBT (nT , ω0,g(nT ))]T

we can rewrite (9) for all i = 1, . . . , nT as

r = Qα+ ξ . (10)

Using (10), the maximum likelihood (ML) estimate of the vector α
can be written as

α̂ = (QTQ)−1QT r . (11)

This estimate can be used to obtain the coef cients {αl}no
l=1 from a

few training symbols to resolve the ambiguity in the channel vector
estimate.

The following lemma helps us to simplify the computational
complexity associated with computing (QTQ)−1 in (11).

Lemma 1: The columns of the matrix Q are orthogonal to each
other and

QTQ =

(
nT∑
n=1

‖g(n)‖2
)
Ino . (12)

Proof: See [13]. �
Using Lemma 1, one can write the ML estimate of the vector α

in (11) as

α̂ =
1∑nB

n=1 ‖g(n)‖2Q
T r . (13)

According to (13), the ML estimate of α can be obtained from r in
a very simple way that is devoid of matrix inverse.

4. SIMULATION RESULTS

In our simulations, a MIMO system with K = 4, T = 8, N = 4,
and M = 2 is considered. The half-rate OSTBC of [3] is used to
encode the information symbols. For this code no = 4 and, there-
fore, the blind method of [9] is not applicable. It is assumed that a
single training block is used in our semiblind approach (nT = 1).
Note that this amount of training is insuf cient for the conventional
training-based methods and, therefore, these techniques are not in-
cluded in our gures. The SNR is de ned as σ2h/σ

2 where σ2h is the
variance of each entry of H. In each simulation run, the elements
of H are independently drawn from a Gaussian distribution and are
xed during each run (i.e., the channel remains constant over the

number of data blocks that are used to estimate the CFO and the
channel). Throughout the simulations, QPSK symbols are used and
ωo = 0.9 is taken.

To quantify the performance of our technique in estimating the
CFO parameter, we use the normalized mean squared error (NMSE)
of CFO estimates. The NMSE can be de ned as

CFO-NMSE � E{(ω̂o − ωo)
2}

ω2o

where E{·} stands for the expected value. Similarly, to quantify the
performance of our method in terms of channel estimation accuracy,
we use the NMSE of channel estimates (C-NMSE) de ned as

C-NMSE � E

{
‖ĥ − h‖2

‖h‖2
}
.

Figs. 1 and 2 show the CFO-NMSE and C-NMSE, respectively,
versus SNR for different values of nB . As can be seen from the
gures, even with a single training block, the proposed approach

provides quite accurate estimates of the CFO and channel param-
eters. The quality of these estimates substantially improves when
increasing nB .

More simulation results on the performance of our method in-
cluding bit error rate (BER) comparisons of the proposed technique
with known training-based approaches will be presented in the jour-
nal version [13] of this paper.
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Fig. 1. CFO-NMSE versus SNR for different values of nB .

5. CONCLUSIONS

We have presented a semiblind approach to jointly estimate the chan-
nel matrix and the CFO parameter in orthogonal space-time block
coded MIMO communication systems. Our method blindly esti-
mates the CFO parameter along with a low-dimensional subspace
where the equivalent channel vector is located, and then uses a few
training blocks to extract the channel matrix from this subspace.
Simulation results have validated the performance of the proposed
method.
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