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ABSTRACT

A potential usefulness of a priori time-of-arrival (TOA) information
for asynchronous co-channel interference (CCI) cancellation is ad-
dressed. An interval-based maximum likelihood (ML) benchmark
is developed and compared to the averaged ML benchmark and reg-
ularized second-order semi-blind (SB) solution that do not use the
TOA information. It is found that in short burst scenarios the SB al-
gorithm demonstrates performance that is close to the interval-based
ML benchmark. Furthermore, it is shown that SB may outperform
the ML benchmarks in the ML breakdown situation. For longer
bursts, the known TOA information can signi cantly improve the
performance.

Index Terms— Asynchronous co-channel interference, semi-
blind second-order ltering, interference time-of-arrival, maximum
likelihood benchmark.

1. INTRODUCTION

Space-time (frequency) equalization and interference cancellation
techniques in wireless communications usually exploit known train-
ing (pilot) symbols to estimate the weights of an antenna array. The
underlying assumption for these techniques is that the training data
is reliable since the co-channel interference (CCI) overlaps with the
training symbols of the desired signal. Normally, this is the case for
the synchronous CCI, which has the same time-frequency structure
as the desired user. Asynchronous cells, packed transmission, inter-
ference avoidance schemes, and other techniques lead to more com-
plicated asynchronous or intermittent CCI scenarios [1] - [3] and oth-
ers, where the interference may partially overlap or not overlap with
the training data of the desired signal. For example, a cross-layer
analysis in [2] demonstrated that this kind of interference is espe-
cially relevant for visiting (distant) users in an Open Access Network
(OAN) built on wireless local area network (WLAN) with medium
access control (MAC) based on carrier sensing multiple access with
collision avoidance (CSMA/CA).

A second-order statistic adaptive SB algorithm for asynchronous
CCI cancellation is proposed and studied in [4], [5]. It is based on
regularization of the conventional training-based least squares (LS)
solution by means of the weighted covariance matrix estimated over

∗Part of this work has been done in the context of the IST FP6 MEM-
BRANE project.

the whole data interval. It is shown in [4], [5] that its performance in
typical asynchronous CCI scenarios is close to the performance of a
non-asymptotic ML benchmark jointly estimated over both the train-
ing and working intervals. This benchmark is based on the stochastic
ML bounds developed in [6].

Similarly to the SB algorithm, the benchmark in [4], [5] uses
the averaged estimates of the covariance matrices over the training
and working intervals without recovering a temporal interference
structure, i.e., TOA for different interference components. Poten-
tially, TOA could be obtained by means of some detection of abrupt
changes algorithms [7]. It is clear that this additional a priori infor-
mation could be taken into account by interference cancellation al-
gorithms. Obviously, in some scenarios the additional TOA informa-
tion may be critically important. For example, if non-overlapping in-
tervals affected by different interference components could be found
at the data interval, then these intervals could be processed using dif-
ferent weight vectors instead of one set of weights trying to cancel
all the interference components as in the average SB solution in [4],
[5]. In other scenarios an advantage of such modi ed algorithm may
be less obvious.

Taking into account that TOA estimation may be a dif cult prob-
lem especially for short intervals, it is important to develop a mod-
i ed interval-based non-asymptotic ML benchmark assuming the
known TOA information. This benchmark can be useful for as-
sessment of the potential performance in particular scenarios. If the
interval-based ML benchmark demonstrates close to the averaged
ML benchmark or SB performance, then additional efforts for TOA
obtaining may not be justi ed in such scenarios.

In this paper we develop such an interval-based non-asymptotic
benchmark and apply it in the particular asynchronous CCI scenario
typical for visiting user collisions in an OAN WLAN system with
CSMA/CA [2]. We show that for short data bursts the interval-based
and averaged benchmarks demonstrate close performance. Further-
more, in the high signal-to-noise (SNR) case the SB algorithm may
outperform the benchmarks because of the ML breakdown. On the
contrary, for relatively long bursts with the low probability to meet
short intervals with different interference scenarios, the additional
TOA information may signi cantly increase the potential perfor-
mance.

In Section 2 we describe the data model and formulate the prob-
lem. In Section 3 an interval-based non-asymptotic ML benchmark
is developed. The simulation results are given in Section 4. Section
5 concludes the paper.
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2. DATA MODEL AND PROBLEM FORMULATION

We consider the following narrowband, e.g., for a separate OFDM
sub-carrier, data model of the signal received by an antenna array of
K elements:

x(n) = hs(n) +
M�

m=1

gmum(n) + z(n), (1)

where n = 1 . . . N is the time index; x(n) ∈ CK×1 is the vector
of observed outputs of an antenna array; s(n) is the desired signal,
E{|s|2} = ps, E{s(q)s∗(g)} = 0, q �= g, E{·} denotes expectation;
um(n), m = 1 . . . M are the M < K − 1 components of CCI:

E{um(q)u∗
m(g)} =

��
�

pm, q = g ∈ Nm

0, q = g�Nm

0, q �= g
, (2)

Nm is the appearance interval for the m-th interference compo-
nent, z(n) ∈ CK×1 is the vector of noise, E{z(n)z∗(n)} = p0IK ,
E{z(q)z∗(g)} = 0, q �= g and h ∈ CK×1 and gm ∈ CK×1 are the
vectors modelling linear propagation channels for the desired sig-
nal and interference. All propagation channels are assumed to be
stationary over the whole data slot and independent for different an-
tenna elements and slots. The desired signal, noise, and all interfer-
ence components are assumed to be independent circular Gaussian
processes.

The training interval of Nt > K + 1 samples: s(n), n =
1, . . . , Nt, is locaded in the preamble and known at the receiver. The
working data interval n = Nt +1, . . . , N of Nd = N−Nt samples
is de ned as the rest of the slot.

The interference appearance intervals Nm = nm, . . . , N of
Nm = N − nm + 1 samples, where nm+1 > nm > Nt for
m = 1, . . . , M − 1, are assumed to be known at the receiver for
the interval-based ML benchmark and not known for the SB algo-
rithm and averaged ML benchmark. All the propagation channels,
interference and noise power are not known at the receiver.

The introduced model is illustrated in Fig. 1. It corresponds
to the situation where the CCI components in a “hidden terminal”
environment appear with random delays because of the CSMA/CA
protocol as shown in [2]. The important feature of this model is that
some of the intervals with different interference scenarios in Fig. 1
may be quite short leading to estimation dif culties.

Desired signal

CCI1

CCI2

Training interval Data interval

0�

1 tN 1n 2n

0T 1T 2T

2�1�

Fig. 1. Narrowband data model for two-component asyn-
chronous CCI

Similarly to [4], [5], for simpli cation of Gaussian modelling
we assume that the training samples are generated as i.i.d. com-
plex Gaussian random values. While the actual power of the useful

signal ps is unknown, the power of the training signal pt is set to
1. Note, that this modelling means that strictly speaking we have
to simulate different random-like training sequences to accurately t
into the Gaussian assumption. In what follows for analytical deriva-
tions we accept Gaussian random-like training signal model, while
for actual simulations we model the desired signal and CCI as inde-
pendent streams of random (±1 ± j1)/

√
2 symbols. Another sim-

pli cation is that we assume that all the intervals Tm of Tm symbols,
m = 0, . . . , M with different interference scenarios are long enough
to form suf ccient statatistics for each interval, i.e., Tm > K. This
assumption signi cantly simpli es Gaussian modelling and do not
change the overall results signi cantly.

A signal estimate can be found as the output of a spatial lter:

ŝ(n) = ŵ∗(n)x(n), n = Nt + 1, . . . , N. (3)

In the case of averaged or “stationarized” processing a xed weight
vector ŵ(n) = ŵ is used for the whole data interval. Particularly,
the SB solution [4], [5] can be expressed as follows:

ŵSB = [(1− δ)R̂t + δR̂d]−1r̂t, (4)

where R̂t = N−1

t
�Nt

1 x(n)x∗(n) and r̂t = N−1

t
�Nt

1 s∗(n)x∗(n)
are the covariance matrix and cross-correlation vector estimated over
the training interval, R̂d = N−1

d
�N

n=Nt+1 x(n)x∗(n) is the co-
variance matrix estimated over the whole data interval and 0 ≤ δ ≤
1 is the regularization coef cient.

One can see that the SB estimator (4) contains the conventional
LS solution ŵLS = R̂−1

t r̂t as a particular case for δ = 0.
In the case of an interval-based processing, it is naturally to ap-

ply different spatial lters at different intervals Tm of Tm symbols:

ŵ(n) = ŵm, n ∈ Tm, m = 0, . . . , M. (5)

The problem is to nd a ML bound for such estimates and com-
pare its ef ciency with the average ML benchmark [4], [5] and the
SB algorithm (4) that do not use the TOA information.

3. INTERVAL-BASED NON-ASYMPTOTICML
BENCHMARK

3.1. Optimization criterion

Under the introduced data model 1, the covariance matrices at the
training and data intervals are:

Rt = vv∗ + p0IK , (6)

Rm = Rm−1 + gmg∗
m, m = 1, . . . , M, (7)

where R0 = Rt and v =
√

psh.
During the training interval we observe (K+1)-dimension inde-

pendent Gaussian training vectors x̄(n) = [s(n),xT (n)]T , n ∈ Nt.
Taking into account that Nt > K + 1, the suf cient statistic at the
training interval is

ˆ̄Rt = N−1

t

Nt�
n=1

x̄(n)x̄∗(n) =

�
p̂t r̂∗t
r̂t R̂t

�
, (8)

1Some simpli cations are adopted for the data model in Section 2 such as
no CCI at the training interval, Tm > K and all the CCI components last till
the end of the data burst. The proposed benchmark can be easily modi ed
for the general scenario, e.g., undersumpled case Tm < K can be addressed
similarly to [8]
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where p̂t = N−1

t
�Nt

n=1 s(n)∗s(n), r̂t = N−1

t
�Nt

n=1 s(n)∗x(n),

R̂t = N−1

t
�Nt

n=1 x(n)x∗(n) and

E{ ˆ̄Rt} =

�
1 v∗

v Rt

�
. (9)

During the working interval we observe K-dimension indepen-
dent Gaussian vectors x(n), n ∈ Tm and again because of Tm > K,
the suf cient statistics at the working intervals are R̂m =
T−1

m

�
n∈Tm

x(n)x∗(n), where E{R̂m} = Rm for m = 0, . . . , M .
Taking into account the structure of covariance matrices at dif-

ferent intervals, the admissible set of the optimization parameters
can be introduced as follows:

Āt =

�
1 b∗

b bb∗ + dIK

�
> 0, (10)

Am = Am−1 + cmc∗
m > 0, m = 1, . . . , M, (11)

A0 = bb∗ + dIK > 0, (12)

where b and cm, m = 1, . . . , M are a K × 1 vectors and d is a
positive scalar.

Since suf cient statistics ˆ̄Rt and R̂m are non-degenerate ma-
trices, the ML estimates could be obtained via maximization of a
monotonic function of the product of the M + 2 likelihood ratios
(LR):

Find max
b,cm,d

γ(Āt,Am), (13)

γ(Āt,Am) = γt(Āt)
M�

m=0

γm(Am)Tm/Nt , (14)

γt(Ãt) =
det(Ā−1

t
ˆ̄Rt)exp(K + 1)

exp[tr(Ã−1

t
ˆ̃Rt)]

, (15)

γm(Am) =
det(A−1

m R̂m)exp(K)

exp[tr(A−1
m R̂m)]

, (16)

3.2. Initialization

For Monte-Carlo simulations in Section 4 we adopt an approximate
recursive procedure that estimates vector cm assuming that matrix
Am−1 is known:

d[0] = (K − 1)−1
K−1�
i=1

αi, b[0] = c
[0]
0 = r̂t, (17)

c[0]
m =

√
λmaxÂ

− 1
2

m−1vmax, (18)

Âm = Âm−1 + ĉ[0]
m ĉ[0]∗

m , m = 1, . . . , M, (19)

where λmax and vmax are the maximum eigenvalue and the cor-
responding eigenvector of matrix Â

− 1
2

m−1R̂mÂ
− 1

2
m−1 and αi are the

eigenvalues of matrix R̂t in ascending order.
The ML estimate of a partially known covariance matrix used in

(18), (19) is based on the algorithm developed in [9]. Other initial-
ization procedures, e.g., similar to [4], [5], can be applied as well.

3.3. Outliers selection

As far as the optimization problem formulated in Section 3.1 is not
convex, any initialization and locally convergent optimization algo-
rithm cannot guarantee nding the global solution. A technique that
allows us to decide if the local solution is far away from the global
maximum, i.e. it can be classi ed as an outlier, is developed in [6].
For benchmarking applications as in this paper, the outliers can be
just disregarded and performance can be estimated over remaining
trials [4], [5].

The basic idea is that the global maximum of the LR function
(13) always exceeds the LR function for the actual parameters, i.e.
for the global solutions ( ˆ̄Rt)ML and (R̂m)ML we have

γmax = γ
�
( ˆ̄Rt)ML, (R̂m)ML

�
> γ(R̄t,Rm)) = γ0. (20)

In this paper we apply the interval-based ML benchmark only to
simulated data. So, the selection procedure is as follows:

- Find a local solution to the nonlinear optimization problem (13)
using the presented initialization and calculate the LR value for this
solution γ̂ = γ( ˆ̄Rt, R̂m).

- If γ̂ > γ0, accept this solution, otherwise classify it as an
outlier.

4. SIMULATION RESULTS

We simulate a four-element antenna array and two-component inter-
ference according to the asynchronous CCI scenario in Fig.1. The
desired signal and interference are generated as independent streams
of random symbols (±1±1)/

√
2. All propagation channels are sim-

ulated as independent complex Gaussian vectors with unit variance
and zero mean. The training sequence of Nt = 8 symbols and vari-
able total number of symbols N are considered. The interval-based
ML benchmark presented in Section 3, the averaged ML benchmark
from [4], [5] and the SB algorithm (4) are compared by means of
the mean square error (MSE) and bit error rate (BER) performance
estimated over 104 trials with independent channel and TOA real-
izations.

The MSE and BER results are presented in Fig. 2, 3 for variable
SNR and different burst duration. The benchmark performance is es-
timated over (70 - 95)% of trials depending on conditions using the
outlier selection procedure speci ed in Section 3.3. First of all, one
can see that for all considered scenarios the LS performance is very
poor compared to SB and both benchmarks as expected. Further-
more, for shorter bursts the interval-based ML advantage over the
average benchmark and SB is not signi cant: it is less than 2 dB for
low and medium SNR in Fig. 2. For longer bursts, the interval-based
ML benchmark shows much better results, e.g., 4 dB and 6 dB im-
provement at 0.1% BER compared to the averaged ML benchmark
and SB as in Fig. 3.

An important observation can be made for the high SNR in Fig.
2, where the SB algorithm outperforms both the ML benchmarks.
A possible reason is the ML breakdown for short overlapping inter-
vals, where the ML solution becomes unreliable and leads to poor
estimates in terms of MSE and BER. Obviously, short overlapping
intervals can be met with higher probability in a short burst scenario
and their average impact is more signi cant for higher SNR. This is
why the ML performance degradation in our simulations is visible
only in Fig. 2 for SNR=20 dB.
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This effect is further illustrated in Fig. 4 that presents the MSE
and BER performance in the scenario shown in Fig. 1 with n1 =
n2 = Nt +1, i.e., both interference components completely overlap
with the data interval. The xed size of the training interval of Nt =
8 symbols and variable duration of the data interval are assumed
in Fig. 4. Clearly, both the ML benchmarks are equivalent in this
case. Again, one can see that for very short data interval of Nd = 5
symbols, SB outperforms the ML benchmark; for medium size data
interval of Nd = 10 symbols, their performance is almost the same;
and for longer data interval of Nd = 42 symbols, the ML benchmark
clearly outperforms the SB solution. It is worth emphasizing that
in all these scenarios the SB solution is very poor in terms of ML
estimation. For example, in the case of Nd = 5, γ̂SB/γ0 < 0.1 is
observed in more that 90% of trials for SNR=15 dB.

5. CONCLUSION

An asynchronous interference cancellation problem has been con-
sidered. A potential usefulness of an a priori TOA information has
been studied. An interval-based ML benchmark has been developed
and compared to the averaged ML benchmark and SB solution that
do not use the TOA information. It has been found that in short burst
scenarios the SB algorithm demonstrates performance that is close
to the interval-based ML benchmark. Furthermore, it may outper-
form the ML benchmarks in the ML breakdown situation. For longer
bursts, the known TOA information can signi cantly improve the
performance. Thus, new second-order semi-blind algorithms with
TOA estimation may be required for such scenarios.
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Fig. 2. MSE and BER performance for N = 50
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Fig. 3. MSE and BER performance for N = 100
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