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ABSTRACT
Channel estimation for multiuser doubly-selective channels is con-
sidered using superimposed training. The time-varying channel is
assumed to be described by a discrete prolate spheroidal basis expan-
sion model (DPS-BEM). A user-speci c periodic training sequence
is arithmetically added (superimposed) at a low power to each user’s
information sequence at the transmitter before modulation and trans-
mission. A two step approach is adopted where in the rst step we
estimate the channel using only the rst-order statistics of the obser-
vations. Using the estimated channel from the rst step, a Viterbi
detector is used to estimate the information sequence. In the second
step a deterministic maximum likelihood (DML) approach is used
to iteratively estimate the multiuser channel and the information se-
quences sequentially.

Index Terms— Doubly-selective channels, channel estimation,
basis expansion models, multiuser channels

1. INTRODUCTION

Consider a doubly-selective (time- and frequency-selective) multiuser
nite impulse response (FIR) linear channel with K inputs (users)
andN outputs, resulting in a multiple-input multiple-output (MIMO)
formulation. Let {sk(n)} denote the k-th user’s transmitted symbols
which is input to the MIMO channel with the k-th user’s discrete-
time impulse response {hk(n; l)}. Then the symbol-rate,N -column
channel output vector (resulting from N receive antennas, e.g.) is
given by

x(n) =
K∑

k=1

L∑
l=0

hk(n; l)sk(n− l). (1)

A parsimonious representation of time-varying channels is provided
by basis expansion models (BEM) where one assumes

hk (n; l) =

Q∑
q=1

hqk (l) uq (n) (2)

where uq (·) is the q-th basis function, and hqk (l)’s are xed over
the data block. In the complex exponential basis expansion model
(CE-BEM) [4], for a data block length of T symbols with symbol in-
terval Ts sec., one chooses uq (n) = ejωqn, ωq := 2π

[
q − Q+1

2

]
/T ,

L := �τd/Ts�, and Q := 2 �fdTTs� + 1 when the underlying
continuous-time channel has a delay spread of τd sec. and Doppler
spread of fd Hz. In discrete prolate spheroidal BEM (DPS-BEM),
the i-th DPS vectorui := [ui (0) , · · · , ui (T − 1)]T (called Slepian
sequence in [9], which is time-windowed DPS sequence) is the i-
th eigenvector of a matrix C [8]: Cui = λiui, where [C]n,m =
sin[2π(n−m)fdTs]

[π(n−m)]
is the (n, m)-th entry ofC and λ1 ≥ λ2 ≥ · · · ≥
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λT are the eigenvalues of C. The DPS sequences uq(n) are or-
thonormal over the nite time interval [0, T − 1].

The rectangular window of the truncated DFT-based CE-BEM
model introduces spectral leakage [7], [9]. The energy at each indi-
vidual frequency leaks to the full frequency range, resulting in sig-
ni cant amplitude and phase distortion at the beginning and the end
of the data block [9]. DPS sequences are a good alternative as a ba-
sis set to approximate bandlimited channels alleviating the spectral
leakage of CE-BEM [9]. In this case one takes Q = �2fdTsT �+ 1
[9].

The noisy measurement of x(n) is given by

y(n) = x(n) + v(n). (3)

Our objective is to recover {sk (n)} given noisy {y (n)}. In several
approaches this requires knowledge of the channel impulse response.
Recently superimposed training based approaches have been inves-
tigated where for the k-th user, one takes

sk (n) = bk (n) + ck (n) , (4)

where {ck (n)} is a training (pilot) sequence added (superimposed)
at a low power to the information sequence {bk (n)} at the transmit-
ter before modulation and transmission. There is no loss in data
transmission rate, unlike the conventional time-multiplexed train-
ing. Time-invariant multiuser channel estimation using superim-
posed training can be found in [5] and [1]. CE-BEM-based doubly-
selective multiuser channel estimation using superimposed training
can be found in [6]. DPS-BEM-based single-user channel estimation
has recently been reported in [2]. Ref. [9] is the rst to use DPS-
BEM for doubly-selective channel estimation using time-multiplexed
training.

Objectives and Contributions: We rst extend the rst-order
statistics-based approach of [2] to multiuser systems, where the in-
formation sequences from all users act as interference in channel es-
timation. We then further extend it to an iterative deterministic max-
imum likelihood (DML) approach. In subsequent iterations, the esti-
mate of the information sequences are exploited to enhance channel
estimation, and thus information sequence detection. The DML ap-
proach has been used before in [5] and [6] also for time-invariant and
CE-BEM-based doubly-selective multiuser channels, respectively.

Notation: Superscripts H , ∗ and T denote the complex con-
jugate transpose, complex conjugation, and transpose operations, re-
spectively. δ (·) is the Kronecker delta function and IN is theN×N
identity matrix. The symbol ⊗ denotes the Kronecker product.

2. FIRST ORDER STATISTICS-BASED ESTIMATOR

In this section we extend the rst-order statistics-based approach us-
ing DPS-BEM of [2] to doubly-selective multiuser systems. The
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main idea is to pick user-speci c training sequences so that the prob-
lem of channel estimation is decoupled across various users — this
allows us to use the single user superimposed training-based ap-
proach outlined in [2]. Our approach is to assign distinct cycle fre-
quencies of the periodic training sequences to distinct users. Sup-
pose that for every user k, {ck(n)} is periodic with period P = P̃K

where P̃ is a positive integer. Then, in general

ck(n) =

P−1∑
m′=0

cm′kej(2πm′/P )n ∀n

where cm′k := P−1∑P−1
n=0 ck(n)e−j(2πm′/P )n. Pick {ck(n)} so

that only P̃ coef cients (out of total P ) cm′k, associated with P̃
distinct frequencies, are nonzeros. For instance, we may choose

ck(n) =

P̃−1∑
m=0

c′mkejαmkn, αmk := 2π(Km + k − 1)/P, (5)

for suitably chosen c′mk 
= 0 ∀m, k. One speci c choice may be
found in [5]. [One may take c′mk = c′m1 for k ≥ 2 and ∀m.]

We now state our model assumptions:
(H1) The time-varying channel {hk(n; l)} satis es (2) using the

DPS-BEM representation. Also N ≥ 1.
(H2) The information sequences {bk(n)} are zero-mean, nite-

alphabet, i.i.d. with E{| bk(n)|2} = σ2
bk and mutually in-

dependent for k = 1, 2, · · · , K.
(H3) The measurement noise {v(n)} in (3) is possibly nonzero-

mean (E{v(n)} = m), white complex Gaussian, uncorre-
lated with {bk(n)}, withE{[v(n+τ)−m][v(n)−m]H} =
σ2

vINδ(τ). The mean vectorm is unknown.
(H4) The superimposed training sequences ck(n) = ck(n + mP )

∀m, n are non-random periodic sequences with period P and
average power σ2

ck :=
∑P−1

n=0 |ck (n)|2 /P , satisfying (5)
such that c′mk 
= 0 ∀m, k, and P̃ is an integer with P = P̃K.

Using (1)-(5) we have (here channel is non-random)

E{y(n)} =
K∑

k=1

P̃−1∑
m=0

Q∑
q=1

[
L∑

l=0

hqk(l)cmke−jαmkl

]
︸ ︷︷ ︸

=:dmqk

× uq (n) ejαmkn + m, ∀n. (6)

It then follows that

y (n) =
K∑

k=1

P̃−1∑
m=0

Q∑
q=1

dmqkuq (n) ejαmkn + m + e (n)

where {e (n)} is a zero-mean random sequence. De ne the cost
function J =

∑T−1
n=0 ‖e (n)‖2. Choose dmqk’s andm to minimize

J . Then we must have

∂J

∂d∗mqk

∣∣∣∣∣
dmqk=d̂mqk

= 0,
∂J

∂m∗

∣∣∣∣
m=m̂

= 0, (7)

which leads to
K∑

k′=1

Q∑
q′=1

P̃−1∑
m′=0

d̂m′q′k′

[
T−1∑
n=0

uq′ (n) uq (n) ej(αm′k′−αmk)n

]

+ m̂

T−1∑
n=0

uq (n) e−jαmkn =

T−1∑
n=0

y (n) uq (n) e−jαmkn.

(8)

The time-limited DPS sequences are windowed (using rectangular
windows) versions of in nite DPS sequences that are exactly band-
limited to [−fdTs, fdTs] [8],[9]. Therefore, taking the time-limited
DPS sequences as approximately band-limited to [−fdTs, fdTs], for
fdTs � 1/P and T either a multiple of P or “large”, we have

T−1∑
n=0

uq (n) e−jαmkn ≈ 0 ∀αmk 
= 0, (9)

T−1∑
n=0

uq′ (n) uq (n) ej(αm′k′−αmk)n

≈ δ
(
k′ − k

)
δ
(
m′ −m

)
δ
(
q′ − q

)
. (10)

Since αmk = 0 only happens when m = 0 and k = 1, then for
αmk 
= 0, using (8)-(10), an estimate d̂mqk of dmqk, follows as [2]

d̂mqk =

T−1∑
n=0

y(n)uq (n) e−jαmkn (11)

where omission of αmk = 0 allows us to decouple estimation of
dmqk’s andm. It is easily seen from (6) and (11) that E{d̂mqk} =
dmqk. Sincem is unknown, we omit the term m = 0 from further
discussion.

For 1 ≤ m ≤ P̃ − 1, 1 ≤ k ≤ K, and 0 ≤ l ≤ L, we de ne

Dmk :=
[

dT
m1k · · · dT

mQk

]T
, (12)

Hkl :=
[

hH
1k(l) · · · hH

Qk(l)
]H

,

Vk :=

⎡
⎢⎢⎢⎣

1 e−jα1k · · · e−jα1kL

1 e−jα2k · · · e−jα2kL

...
...

. . .
...

1 e
−jα

(P̃−1)k · · · e
−jα

(P̃−1)k
L

⎤
⎥⎥⎥⎦ ,

Ck :=
(
diag

{
c′1k, · · · , c′(P̃−1)k

}
Vk

)
⊗ INQ,

Hk =
[

HH
k0 · · · HH

kL

]H
,

Dk =
[

DH
1k · · · DH

(P̃−1)k

]H

. (13)

By the de nition of dmqk in (6), we have

CkHk = Dk.

Since αmk’s are distinct and c′mk 
= 0 ∀m, k, (m 
= 0), rank (Ck) =

NQ(L + 1) if P̃ ≥ L + 2; hence, we can determine hqk(l)’s
uniquely. De ne D̂mk as in (12) with dmqk replaced with d̂mqk

and de ne D̂k as in (13) with Dmk replaced with D̂mk. Then the
estimate ofHk is given by

Ĥk = (CH
k Ck)−1CH

k D̂k. (14)

Denote the corresponding estimate of hqk(l) as ĥqk(l). Following
(2), the estimate of the time-varying channel is given by

ĥk(n; l) =

Q∑
q=1

ĥqk(l)uq (n) .

Performance Analysis: We assume that the channel satis es
the following assumption:
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(H5) The time-varying channels {hk (n; l)} are zero-mean, com-
plex Gaussian with E

{
hk (n; l)hH

k (n; l)
}

= σ2
hIN , and

mutually independent for distinct l’s and different users.

If the true channel follows (2), the mean square error (MSE) in chan-
nel estimation for user k can be shown to be given by

MSEk :=
1

T

T−1∑
n=0

L∑
l=0

E

{∥∥∥hk (n; l)− ĥk (n; l)
∥∥∥2
}

=

[
(L + 1)

K∑
k=1

σ2
hkσ2

bk + σ2
v

]
NQT−1

× tr

{
V

H
k

(
diag

{∣∣c′1k

∣∣2 , · · · ,
∣∣∣c′(P̃−1)k

∣∣∣2}Vk

)−1
}

.

(15)

3. ITERATIVE DETERMINISTIC MAXIMUM
LIKELIHOOD (DML) APPROACH

Since the training and information sequences pass through an identi-
cal channel, this fact can be exploited to enhance the channel estima-
tion performance. We now consider joint channel and information
sequence estimation performance via an iterative DML approach as-
suming that the noise v (n) is complex Gaussian.

We de ne the following

Y : =
[
yT (T − 1) · · · yT (L)

]T
s = [s1(T − 1), · · · , sK(T − 1), s1(T − 2), · · · sK(0)]T .

Σn :=
[

u1 (n) IN · · · uQ (n) IN

]
,

T (s) :=

⎡
⎢⎢⎢⎣

s1(T − 1)ΣT−1 · · · s1(T − L− 1)ΣT−1

s1(T − 2)ΣT−2 · · · s1(T − L− 2)ΣT−2

...
. . .

...
s1(L)ΣL · · · s1(0)ΣL

· · · sK(T − L− 1)ΣT−1

· · · sK(T − L− 2)ΣT−2

. . .
...

· · · sK(0)ΣL

⎤
⎥⎥⎥⎦

H =
[
HT

1 · · · HT
K

]T
,

Ṽ =
[

ṽT (T − 1) · · · ṽT (L)
]T

where ṽ(n) := v(n)−m. By (1)-(3), we then have the linear model

Y = T (s)H+ Ṽ +M (16)

whereM :=
[
mT , · · · ,mT

]T . If we further de ne

F(H) :=

⎡
⎢⎣

h1(T − 1; 0) · · · hK(T − 1; 0) · · ·
. . .

. . .
h1(L; 0) · · ·

hK(T − 1; L)
. . .

h1(L; L) · · · hK(L; L)

⎤
⎥⎦

we obtain another linear model as

Y = F(H)s + Ṽ +M. (17)

We consider the joint estimation{
Ĥ, ŝ, m̂

}
= arg min

H,s,m
‖Y − T (s)H−M‖2 . (18)

Under a white Gaussian noise assumption, the nonlinear least-squares
optimization (18) yields the DML parameter estimator. Using (16)
and (17), we have a separable nonlinear least-squares problem that
can be solved sequentially as follows. At iteration j, with an ini-
tial guess of the channel H(j), and the mean m(j), the algorithm
estimates the input sequence s(j) and the channelH(j+1) and mean
m(j+1) for the next iteration by

s
(j) = arg min

s∈S

∥∥∥Y −F
(
H(j)

)
s−M(j)

∥∥∥2

, (19)

H(j+1) = arg min
H

∥∥∥Y − T
(
s
(j)
)
H−M(j)

∥∥∥2

, (20)

m
(j+1) = arg min

m

∥∥∥Y − T
(
s
(j)
)
H(j+1)−M

∥∥∥2

(21)

where S is the (discrete) domain of s. The optimizations in (20) and
(21) are linear least-squares problems having the solutions

m̂
(j+1) =

1

T − L

T−L∑
n=L

[
y(n)−

K∑
k=1

L∑
l=0

ĥ
(j+1)
k (n; l)s

(j)
k (n− l)

]

Ĥ(j+1) = T †
(
s
(j)
) [

Y −M(j)
]
. (22)

whereas the optimization in (19) can be achieved by using the (vec-
tor) Viterbi algorithm. Since the above iterative procedure involving
(19)-(21) decreases the cost at every iteration, one achieves a lo-
cal minimum of the nonlinear least-squares cost (local maximum of
DML function).

4. SIMULATION EXAMPLE

We conclude with a simulation example dealing with a two-transmitter
and two-receiver scenario (K = N = 2). We assume both users
have the same transmitted power in training and information parts.
Considering a random frequency-selective Rayleigh fading channel,
we took L = 2 in (1) with hk (n; l) satisfying Jakes’ model for each
tap with mutually independent and identically distributed taps with
unit variance. We consider a system with carrier frequency of 2GHz,
data rate of 40kBd (kilo-Bauds), therefore, Ts = 25×10−6sec., and
Doppler spread fd = 50 or 100 Hz. We emphasize that the DPS-
BEM is used only for processing at the receiver; the random channels
are generated by Jakes’ model, not the DPS-BEM in (2). The addi-
tive noise was zero-mean complex white Gaussian (m = 0). The
(receiver) SNR refers to the energy per bit per user over one-sided
noise spectral density with both information and superimposed train-
ing sequence counting toward the bit energy. Information sequences
as well as superimposed training sequences were BPSK (binary). We
took P̃ = 7 and P = 14 in (H4). The training sequence for the rst
user (before scaling by σc1) is

{c1(n)}13n=0 = {1,−1,−1, 1, 1, 1,−1, 1,−1,−1, 1, 1, 1,−1},

(a repetition of anm-sequence of period P̃ = 7), and c2 (n) satis es
(5) with c′m2 = c′m1. The average transmitted power σ2

ck in ck(n)
was 0.3 of the power in bk(n), leading to a training-to-information
power ratio (TIR) of 0.3.

II  863



0 5 10 15 20 25 30
10 6

10 5

10 4

10 3

10 2

10 1

100

SNR (dB)

B
it 

Er
ro

r R
at

e
K=2, N=2, T=420, TIR=0.3, 500 runs.

fd=50Hz: SI CE, step 1

fd=50Hz: SI CE: 3rd iter.

fd=50Hz: TM CE

fd=50Hz: SI DPS: step 1

fd=50Hz: SI DPS: 3rd iter.

fd=50Hz: TM DPS

fd=100Hz: SI CE, step 1

fd=100Hz: SI CE: 3rd iter.

fd=100Hz: TM CE

fd=100Hz: SI DPS: step 1

fd=100Hz: SI DPS: 3rd iter.

fd=100Hz: TM DPS

Fig. 1. BER vs SNR. SI-CE: CE-BEM-based superimposed train-
ing; SI-DPS: DPS-BEM-based superimposed training; TM-CE: CE-
BEM-based time-multiplexed training; TM-DPS: DPS-BEM-based
time-multiplexed training; step 1: rst-order statistics-based ap-
proach; 3rd iter.: 3rd iteration of the DML approach.

The results for a data block length of T = 420 bits are shown
in Figs. 1 and 2, for BER and normalized channel MSE (NCMSE)
respectively. The NCMSE is de ned as

NCMSE =

(KMr)
−1

Mr∑
i=1

K∑
k=1

T−1∑
n=0

L∑
l=0

∥∥∥ĥ(i)
k (n; l)− h

(i)
k (n; l)

∥∥∥2

(KMr)−1
Mr∑
i=1

K∑
k=1

T−1∑
n=0

L∑
l=0

∥∥∥h(i)
k (n; l)

∥∥∥2

where h
(i)
k (n; l) is the true channel and ĥ

(i)
k (n; l) is the estimated

channel at the i-th run, among the total Mr runs. The correspond-
ing detection results are based on the Viterbi algorithm utilizing the
estimated channel. The iterations follow our DML approach in Sec.
3. For fd = 50 and 100Hz, we choose the number of basis func-
tions Q = 3 and 5 for CE-BEM, and Q = 3 and 4 for DPS-BEM,
respectively.

For comparison, we consider a CE- or DPS-BEM-based peri-
odically placed time-multiplexed training with zero-padding, fol-
lowing the design of [3]. We took a training block of length of
(K + 1) L + K = 8 bits with the rst user’s training sequence as{

0, 0,
√

b, 0, 0, 0, 0, 0
}
, (b = (L + 1)(σ2

b1 + σ2
c1)), and the second

user’s training is taken as
{

0, 0, 0, 0, 0,
√

b, 0, 0
}
. A data block of

27 bits is inserted between two such training blocks to form a frame
of length 35 bits. Such a frame is repeated over a record length of
420 bits. Thus, we have a training-to-information bit power ratio of
about 0.3, the same as the TIR for superimposed training.

As noted in [9], DPS-BEM ef ciently reduces the spectral leak-
age induced by CE-BEM leading to a much smaller modeling error
— BER and NCMSE curves both exhibit this advantage. It is also
seen that the DML algorithm, whether CE- or DPS-BEM-based, sig-
ni cantly reduces the interference from the information sequence,
which is induced by its rst step, the rst-order statistics-based ap-
proach. The BER performance after several DML iterations is com-
petitive with the optimal time-multiplexed training without incur-
ring the 30% training overhead penalty. For the rst-order statistics-
based estimator, we also plotted the theoretical channel MSE in Fig.
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K=2, N=2, T=420, TIR=0.3, 500 runs.

fd=50Hz: SI CE, step 1

fd=50Hz: SI CE: 3rd iter.

fd=50Hz: TM CE

fd=50Hz: SI DPS: step 1

fd=50Hz: SI DPS: analytical

fd=50Hz: SI DPS: 3rd iter.

fd=50Hz: TM DPS

fd=100Hz: SI CE, step 1

fd=100Hz: SI CE: 3rd iter.

fd=100Hz: TM CE

fd=100Hz: SI DPS: step 1

fd=100Hz: SI DPS: analytical

fd=100Hz: SI DPS: 3rd iter.

fd=100Hz: TM DPS

Fig. 2. Normalized channel MSE vs SNR. SI-CE: CE-BEM-based
superimposed training; SI-DPS: DPS-BEM-based superimposed
training; TM-CE: CE-BEM-based time-multiplexed training; TM-
DPS: DPS-BEM-based time-multiplexed training; step 1: rst-order
statistics-based approach; 3rd iter.: 3rd iteration of the DML ap-
proach.

2. The theoretical expression and simulation-based MSE agree quite
well verifying that the modeling error of DPS-BEM and the approx-
imation error in (10) are rather small.
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