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ABSTRACT

In this paper we consider the spatial degrees of freedom in
the context of a multi-antenna wireless communication sys-
tem. We investigate how the degrees of freedom depend on
important system parameters such as the spatial extent of a
region containing the antennas and, more importantly, the an-
gular correlation of multipath. These results naturally aug-
ment known results which show how the degrees of freedom
are affected by multipath from a restricted range of angles.
We clarify the distinction between the spatial degrees of free-
dom with respect to an orthonormal basis and the concept of
richness of multipath which is related to the Karhenen Loeve
expansions for a random multipath eld.

Index Terms— Degrees of freedom, rich multipath, mul-
tipath modeling, correlated multipath.

1. INTRODUCTION

The degrees of freedom (DoF) of multipath is a central no-
tion which affects the degree of spatial diversity in multi-
antenna wireless communication systems [1] (and closely re-
lated problems such as direction of arrival estimation). In
the analogous context of communication over a bandlimited
waveform channel we can see the universal importance of this
notion. In quantifying the DoF, Gallagher [2, p.361] states:
“A class of functions in which any particular function can
be speci ed by n real numbers is said to have n degrees of
freedom.” For the waveform channel with bandwidthW and
transmission interval T , the degrees of freedom are funda-
mentally limited to 2WT [2, Ch.8]. The context of this paper
is towards developing narrowband spatial channel analogies
of the bandlimited waveform channel results: What are the
spatial degrees of freedom and how do they depend on the
important system parameters such as the spatial size, multi-
path angular diversity and multipath correlation?
If we consider a spatial signal, representing the distribu-

tion of energy in space due to sources, then any constraint
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on the signal or sources naturally reduces the degrees of free-
dom. If the spatial signal is generated as a consequence of
signal propagation in free space then this explicitly imposes a
linear constraint where the signal must satisfy the wave equa-
tion [1, 3] — for such a constrained spatial signal we use the
terminology “wave eld”. It has been well studied how the
wave eld degrees of freedom are affected when there is an an-
gular restriction (constraint) on the direction of arrival of sig-
nals such as when the energy arrives from a limited range of
angles [1] or more general angular distributions [4, 5]. How-
ever, there are additional practically important factors that
also signi cantly decrease the degrees of freedom. This pa-
pers explores the effects of two factors: 1) restricting the size
of the region of interest where antennas are located, and, our
primary focus, 2) angular correlation in the multipath.
The technical contributions of this paper are:

1. To theoretically determine the effect of the size of a
circular region on the degrees of freedom. It is shown
that the effect of changing the radius of the region is
equivalent to ltering the angular multipath distribution
with a speci c non-ideal low pass lter.

2. To theoretically determine the effect of angular correla-
tion for a given angular power spectrum on the degrees
of freedom.

3. We develop a model for generating random wave elds
according to a given angular correlation characteristic
which permits a numerical investigation into the effects
of correlation modeling.

2. DEGREES OF FREEDOM

Awave eld in a bounded region of interest in space can be ac-
curately described with a small number of parameters. These
parameters capture the notion of degrees of freedom (DoF).
In this paper we focus on a circular region for our bounded
region

BR = {x : ‖x‖ ≤ R}
where R is the radius, x represents the 2D vector of spatial
variables an ‖ · ‖ is the euclidean norm. This special shaped
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region admits a simpler formulation and can be regarded as
a natural 2D analog of either the time interval, [0, T ], or the
frequency interval, [−W,W ], used in the bandlimited wave-
form channel case. Alternatively, an arbitrary bounded shape
can be contained within such a circular region and the DoF
thereby bounded. For antenna arrays such a continuous re-
gion is better suited to bounding the performance of circular
arrays than linear arrays.
If all wave elds in the region of interest BR can be accu-

rately expressible with a nite number of parameters {βn}N
n=1

multiplying some orthonormal basis functions Φn(x), we say
the wave eld possesses N DoF with respect to that basis.
Such a basis and coef cients can be regarded as truncation
of a generalized Fourier Series representation. We shall dis-
cuss more fully the concept of degrees of freedom and how
this relates to multipath richness and the optimal choice of
orthonormal basis functions later in sections 4.3 and 4.4.

3. EFFECT OF REGION SIZE

We rst introduce a natural set of basis functions for multipath
(which are optimal only in the special case of isotropic mul-
tipath) to characterize the in uence of region size on degrees
of freedom.
Consider a multipath eld, F (x), in a circular two dimen-

sional region of interest, BR where R, the radius, is one im-
portant system parameter referred in section 1. Then, we can
write,

F (x) =
∫ 2π

0

A(ϕ)eikx·by(ϕ)dϕ, ‖x‖ ≤ R (1)

whereA(ϕ) is the complex multipath scattering gain, the com-
plex amplitude of a multipath originating from each direction
ϕ, k is the wave number, ŷ(ϕ) is a unit vector in the direction
ϕ, and x · y denotes the vector dot product. A(ϕ) implic-
itly represents a speci c geometrical distribution of far- eld
scatterers.
In quantifying the degrees of freedom a Fourier expan-

sion of F (x) is better suited then (1). With an orthonormal
expansion (using the natural inner product de ned over the
region of interest BR) the degrees of freedom can be deter-
mined by the signi cant Fourier coef cients which we write
as βn;R, n ∈ Z. So, following [6], write

F (x) =
∞∑

n=−∞
βn;R Φn;R(x), ‖x‖ ≤ R (2)

where the natural orthonormal basis functions are given by

Φn;R(x) � inJn(k‖x‖)einϕ(x)√
2πJn(R)

, (3)

Jn(·) is the integer order Bessel function of the rst kind [7]
and

Jn(R) �
∫ R

0

(
Jn(kr)

)2
r dr (4)

is a normalizing term for the region of interest BR.
By combining the eld expression (1), natural basis func-

tions (3) and Jacobi-Anger expansion [8, p.32],

eix·by =
∞∑

n=−∞
inJn(k‖x‖)ein(ϕ(x)−ϕ(by)), (5)

and comparing with (2) we nd

βn;R =
√

2πJn(R)αn, (6)

where αn ∈ C is the nth Fourier series coef cient of A(ϕ)
de ned as

αn =
∫ 2π

0

A(ϕ)e−inϕdϕ. (7)

We conclude our investigation of the effect on the region size
on the degrees of freedom with the key results:

1. The effect of the region, parameterized by radius R, is
equivalent to a ltering (convolution) of A(ϕ). In the
transform domain this is given by the multiplication (6).
Therefore, the properties of (4) capture precisely the
low pass, albeit non-ideal, action in the angular domain.
Increasing R increases the effective bandwidth of the
low pass action increasing the DoF.

2. The equivalent ltered multipath scattering gain A(ϕ),
(7), yields an effective multipath scattering gain,

AR(ϕ) � 1√
2π

∞∑
n=−∞

√
Jn(R)αneinϕ (8)

which is directly amenable to standard degree of free-
dom analysis [5]. The erosion of the Fourier coef -
cients with decreasing region size,R, directly decreases
the degrees of freedom.

4. EFFECT OF CORRELATED MULTIPATH

4.1. Correlated Random Multipath Fields

We now consider the case of a random multipath eld. Here
we model the multipath scattering gain A(ϕ), used in (1),
as a random wave eld, de ned by the second order quantity
E{A(ϕ1)A∗(ϕ2)

}
. From this we de ne the angular power

spectrum (APS):

P (ϕ) � E{|A(ϕ)|2}, (9)

which may be expanded as a Fourier series in coef cients
γn =

∫ 2π

0
P (ϕ)e−inϕ dϕ. Note that, given the non-negativity

of (9), these coef cients are constrained to lie in a positive
convex cone. The APS describes the incoming multipath power
as a function of direction [4]. Notice P (ϕ) supplies no infor-
mation regarding the phase of A(ϕ).
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To model correlated multipath we can augment the APS,
(9), by introducing an angular correlation function ρ(ϕ1, ϕ2)
between two multipath directions ϕ1 and ϕ2:

ρ(ϕ1, ϕ2) ≡ E{A(ϕ1)A∗(ϕ2)}√E{|A(ϕ1)|2}E{|A(ϕ2)|2}
.

With this we can study the impact of scatterer correlation on
wave eld DoF. Previously in the literature, it has been as-
sumed (explicitly or implicitly) that the multipaths from dif-
ferent directions are uncorrelated, i.e., ρ(ϕ1, ϕ2) is non-zero
if and only if ϕ1 = ϕ2 [4]. Here we consider a model for
the scatterer correlation of the following form ρ(ϕ1, ϕ2) =
ρ(ϕ1 − ϕ2).With such angular correlation the random wave-
eld is constrained (relative to the uncorrelated case) and,
therefore, this reduces the degrees of freedom we can expect.
To investigate the impact on DoF quantitatively we de-

velop a model for such correlation which is amenable to nu-
merical study. This is the subject of the next subsection.

4.2. Correlated Scatterers Model

To introduce correlated scattering, for a prescribed APSP (ϕ),
we propose a simple model by assuming A(ϕ) is circularly
complex Gaussian and generated according to

A(ϕ) =

√
P (ϕ)

2
x(ϕ) + i

√
P (ϕ)

2
y(ϕ) (10)

where x(ϕ) and y(ϕ) are independent stationary Gaussian
random processes of zero mean and variance one. Note that,
P (ϕ) shapes the angular distribution independent of the com-
ponent process correlations.
We shall work with a sampled version of (10) which sim-

pli es introduction of the correlation. Evaluating A(ϕ) at a
number of angles ϕ1, ϕ2, · · · , ϕn, de ne the vectors of cor-
related Gaussian random variables x = [x(ϕ1), · · · , x(ϕn)]T

and y = [y(ϕ1), · · · , y(ϕn)]T . Sequences x and y both have
the same n × n covariance matrix where each component is
identi ed with ρ(ϕi, ϕj). Generating such correlated random
vectors is standard, e.g., as given in [9, p.215].
In a real multipath environment we expect that there should

be correlation whenever the two angles ϕi and ϕj are close
because they are likely to be coming from the same physi-
cal scatterer illuminated by the same source. Further, as the
separation between the angles increases we expect decreasing
correlation and so we adopt a simple model [10]

ρ(ϕi, ϕj) = e−(ϕi−ϕj)
2/2σ2

S , i, j = 1, 2, . . . , n (11)

where σS ≥ 0 is a correlation spread factor, another important
system parameter referred in section 1. Varying σS changes
the amount of multipath correlation and hence the DoF. This
correlation modeling is independent of the APS P (ϕ).

For a uni-modal APS P (ϕ) the von-Mises power distribu-
tion is the most common choice

P (ϕ) =
1

2πI0(κ)
eκ cos(ϕ−ϕ0), |ϕ− ϕ0| ≤ π, (12)

where κ describes the angular spread of multipath power and
ϕ0 is the central angle of arrival.

4.3. Evaluation of Degrees of Freedom

Previously we qualitatively linked DoF with the number of
signi cant Fourier coef cients. Here we make the connection
explicit. Consider a particular realization F (x) of a random
wave eld. Let FN (x) be the N th order truncation of wave-
eld, (2), retaining the 2N + 1 lowest order terms. The nor-
malized mean square error between (x) and FN (x) over BR

can be written

εN,R �
∫

BR
|F (x)− FN (x)|2dx∫

BR
|F (x)|2dx

=

∑
|n|>N |βn;R|2∑∞
n=−∞ |βn;R|2 (13)

where the denominator is the total energy in the receiver re-
gion. We de ne the DoF as the number of parameters required
for which the error between truncated and actual wave elds
is below an acceptable threshold level ε0:

DoF = 2× arg min
N
{εN,R ≤ ε0}+ 1 (14)

Conventionally one takes ε0 = 0.01. DoF measures the num-
ber of parameters with respect to the natural basis functions
(3). A stochastic notion of degrees of freedom can be obtained
by inserting expectations around the numerator and denomi-
nator of (13) and estimated by averaging over a number of
trials.
In the above formulation it is interesting to consider the

question of what choice of basis leads to the least number of
parameters. This question is answered in the next section and
captures the notion of multipath richness.

4.4. Multipath Richness

In a random wave eld, each wave eld coef cient βn;R in (2)
is a random variable. Depending upon the statistical class of
wave eld, the wave eld coef cients are generally correlated
(which represents redundancy). It is possible in this case to
express the wave eld in a different set of basis functions with
a lesser number of parameters that are uncorrelated (to the
same truncation accuracy). The optimal representation of a
wave eld is given by the Karhunen-Loeve (KL) expansion

F (x) =
∞∑

n=1

√
λnζn Ψn(x), (15)

(which can be truncated to the desired nite number of terms)
where the orthonormal basis (eigen-)function set {Ψn} repre-
sents the optimal set for a stochastic multipath eld, λn > 0
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Fig. 1. Ratio
∑N

n=−N |βn|2/
∑∞

n=−∞ |βn|2 vs truncation or-
derN in (13) for von-Mises APS with different angular power
spread and two values for the correlation spread factor. The
receiver region has radius R = λ.

represents an eigenvalue associated with eigenfunctionΨn(x)
and ζn are new uncorrelated wave eld coef cients (random
variables) of unit variance.
We de ne multipath richness consistently with (13) and

(14) as follows. Assume the λn are arranged in descending
order. The eld in BR is said to have a multipath richness of
N when N is the least integer such that

∑
n>N λn∑∞
n=0 λn

< ε0. (16)

Again conventionally one takes ε0 = 0.01. Under this frame-
work, given the 
2 formulation, the N in (16) tightly lower
bounds theN in (13) for the same error threshold and, thereby,
the richness is a tight lower bound on the degree of free-
dom for any basis. This framework con rms that multipath
richness is proportional to the angular spread of multipath
power [5]. For example, the von-Mises power distribution
in (12) will generate richer multipathfor smaller κ.

4.5. Numerical Results

Fig. 1 shows the effect on the ratio (13) vs truncation order,
and hence the DoF, numerically. In the lower three curves,
the ratio tends to increase as κ decreases, under the same
level of angular correlation of A(ϕ) where σS = 0.4. This
indicates the energy of the wave eld concentrates to low-
order coef cients of {βn,R} sequence with richer multipath
as referred in 4.4. Thus the DoF is decreased correspond-
ingly. We further increase the angular correlation by setting
σS equal to 1.0 in the upper three curves in Fig. 1. With a
more correlated A(ϕ), {βn,R} sequence indicates a more in-
tense concentration to low-order Fourier coef cients {βn,R}.
This shows angular correlation contributes positively to the
low-order modes energy concentration of the Fourier coef -
cients. This con rms the speculation that highly correlated
wave elds have less DoF.

5. CONCLUSIONS

Multipath restricted to a limited range of angles is known to
limit the degrees of freedom but it is further reduced if it is
also correlated in angle. We have developed a model for such
correlated multipath and shown how to compute the degrees
of freedom in terms of the signi cant Fourier series coef -
cients of a correlated multipath wave eld expansion. We also
showed that, for a circular region, the effect of changing the
radius of the region is equivalent to ltering the angular mul-
tipath distribution with a speci c non-ideal low pass lter.
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