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ABSTRACT

We study the target class detection performance of a sensor network
having a structured topology. The target is in the far-field of the
network, located at a distance γ and angle θ, and produces a random
signal field that is sampled by sensors. It is assumed that samples
have a correlation structure and power level that depend on γ, θ and
the target’s class i, i ∈ {0, 1}.

We study the Neyman-Pearson miss probability error exponent
for this scenario using large deviations theory. When (γ, θ) is known,
we characterize the properties of the error exponent as a function of
signal and design parameters. When (γ, θ) has at least one unknown
component, we use the theory of adaptive tests [2] to prove that there
exists a test that achieves the same error exponent as if (γ, θ) were
known in some scenarios, but that there exists no such test in others.

Index Terms— Error exponent, Gauss-Markov model, Neyman-
Pearson detection, Adaptive test

1. INTRODUCTION

We study the identification of a target by a sensor network. We as-
sume that the target belongs to one of two classes (e.g., friendly and
enemy) and produces a stochastic “signal field” that evolves concen-
trically, and that is sampled with spacing d by a set of N sensors
located in the far-field of the target at a distance γ and angle θ; see
Figures 1 and 2. It is assumed that samples have a correlation struc-
ture and power level that depend on γ, θ and the target’s class i,
i ∈ {0, 1}. (For example, if the target is a tank it may produce
an acoustic wavefront which can be sampled by sensors, creating
a signal field. The variance and correlation structure of this field
would depend on the class of tank, as well as the location of the sen-
sors relative to the tank.) These samples are sent to a fusion center
which fuses the data and makes a single global decision as to the
target’s class (this scenario is formalized in Section 2). We assume
that the fusion center uses binary hypothesis testing to make a deci-
sion, where hypothesis Hi denotes the event that the target is of class
i ∈ {0, 1}, and, in the absence of a prior probability on the class of
target, uses the Neyman-Pearson (NP) testing framework [5].

We study the detection performance once the N samples ar-
rive at the fusion center.1 Let PF denote the probability of false
alarm and PM the probability of miss. To characterize detection per-
formance we study the NP error exponent defined for a constraint
PF ≤ α ∈ (0, 1) as the exponential rate of decay in PM as the
number of signal samples approaches infinity, i.e.,

K � lim
N→∞

− 1

N
log PM . (1)

1The communication protocols used to initiate the detection process and
to deliver the samples to the fusion center are not considered in this work.

The error exponent is a useful metric. It provides an estimate
on the number of observations needed to attain a given level of de-
tection performance, is often parameterized by physical and design
parameters (e.g., the signal to noise ratio (SNR) and sensor spacing)
that allow us to quantify and optimize the impact of these parameters
on detection performance. However, equation (1) is currently in an
implicit form that is not amenable to analysis.

Suppose first that (γ, θ) is known perfectly at the fusion center.
Let pi(s

N
1 |γ, θ) denote the probability density of the sequence of N

samples, s1, . . . , sN , obtained when Hi is true. If the likelihood ra-
tio test (LRT) is used at the fusion center, a generalization of Stein’s
lemma [8] yields

K = lim
N→∞

1

N
log

p0(s
N
1 | γ, θ)

p1(sN
1 | γ, θ)

(a.s. in H0), (2)

provided that the limit exists, where the notation (a.s. in H0) means
that the limit is to be taken in the almost sure sense under H0. Note
that (2) is independent of α.

Now suppose that at least one component of (γ, θ) is unknown.
In this case, the fusion center cannot implement the (NP optimal)
LRT, and (2) serves only as an upper bound on detection perfor-
mance. We ask, can this upper bound be achieved by any imple-
mentable test? Recall that our criteria (1) is defined as the data size
N grows large. As an intuitive example of how such a test could ex-
ist, consider a test employing the LRT but with unbiased estimates
of the unknown parameters used in place of the true values. Such
a test would be able to achieve (2) if the estimators converge suffi-
ciently fast in N . More generally, we are interested in the existence
of any test which achieves the bound (2). We use the theory of adap-
tive tests [2] to prove that when (γ, θ) has at least one unknown
component, the existence of such a test is strongly dependent on the
assumptions made on the knowledge of (γ, θ). See Section 6 for a
list of main results.

1.1. Related Work

This work addresses the distributed detection of a binary hypothesis
using the criterion (1). Related works consider the evaluation of (1)
for certain signal models. When the probability density of the data is
known for each hypothesis, [7] considers evaluation of (1) when sN

1

is i.i.d. receiver noise under H0 and a noisy ergodic Gauss-Markov
signal under hypothesis H1. In [1, pp.138-139] and [2], error ex-
ponents are provided for the case of Gauss-Markov signals under
either hypothesis where the correlation parameter or variance is hy-
pothesis dependent. In [3], we characterized properties of the error
exponent for equi-powered noiseless Gauss-Markov signals under
both hypotheses using a physical model which linked the correlation
parameter to network design parameters.

When knowledge of the probability density is incomplete, one
approach is to model unknown parameter(s) (γ and/or θ in this work)
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as nuisance parameters. Reference [2] provides a definition of and
theorem on the existence of asymptotically optimal tests (known as
adaptive tests), and evaluates it for a wide class of Markov processes.
In [3], we showed that for a related target detection problem, the nui-
sance parameter is embedded within the correlation parameter. We
proved that no adaptive test exists for such a scenario. This work is
a generalization of [3] to signals of unequal power and with multiple
nuisance parameters, and for several different assumptions on which
parameters are known at the fusion center.

2. SYSTEMMODEL

Consider the system described in the introduction and in Figures 1
and 2. We model the signal field as a Gaussian random field that
evolves with a Gauss-Markov correlation structure along any straight
line originating from the target. In the far-field, the closest straight
line intersects the collection line at an angle θ. We assume θ ∈ Θ �
[θmin, θmax], where 0 ≤ θmin < θmax ≤ π/2.2

Consider the observations sN
1 taken by the sensors. We assume

that sN
1 are noiseless, with statistics under Hi described by

Hi : sk = ai sk−1 + zi,k, i ∈ {0, 1}, (3)

where ai ∈ (0, 1) describes the correlation strength, sk ∼ N (0, γ σ2
i )

is the kth signal sample, and zi,k
i.i.d.

∼

N (0, γ σ2
i (1 − a2

i )) is inno-

vations noise.3 The signal power is given by γσ2
i where σ2

i > 0 de-
notes the power of the signal observed at the sensors if the network
is located at some reference distance from the target, and where γ
is a scale factor that reflects the actual distance of the target. We
take γ ∈ Γ � [γmin, 1] with γmin ∈ (0, 1).4 We assume that the
coefficient ai decays exponentially in the projected sensor distance
d cos(θ) at a rate proportional to a specified constant Ai, i.e.,

ai = exp{−Aid cos(θ)}, (4)

where Ai∈ (0,∞) and A0 �= A1. All quantities are assumed known
at the fusion center except for possibly γ and θ, discussed below.

Topography and logistics can limit the possible region over which
the target can be located (e.g., due to roadways, mountains, or rules
and regulations). If γ and/or θ are unknown at the fusion center, the
values of θmin, θmax, and/or γmin can be used to quantify this a priori
knowledge. It will be seen that knowledge of (γ, θ) plays a major
role in the ability of the network to determine the target’s class.

3. ERROR EXPONENT FOR KNOWN LOCATION

We start with the case where (γ, θ) is known perfectly at the fusion
center. We evaluate and analyze (2).

3.1. Calculation of the Error Exponent via the SLLN

Since sN
1 is a Markov sequence, it follows that log Pi(s

N
1 |γ, θ) =

log Pi(s1|γ, θ) +
N�

k=2

log Pi(sk|sk−1, γ, θ). Each term above is

Gaussian distributed and is easily evaluated [4, p.184]. Substitut-
ing the result into (2) and repeatedly applying the strong law of large
numbers (SLLN) for weakly stationary processes [6, p.206], we get

K =
1

2
log

�
R

1 − a2
1

1 − a2
0

�
+

1

2

�
1

R

1 − 2a0a1 + a2
1

1 − a2
1

− 1

�
, (5)

2Choosing the right limit as π
2

will be seen to entail no loss of generality.
3N (0, σ2) denotes a zero mean Gaussian random variable with var. σ2.
4If γ is decreasing in the target-to-network distance, γ = 1 represents the

furthest, and γ = γmin the closest, possible distance to the sensor network.

where R � σ2
1/σ2

0 is the ratio of signal powers. Next, we analyze
(5) w.r.t. R and the network parameters given by the relation (4).

3.2. Analytic Properties of the Error Exponent

In properties P1-P3 below, we fix {aj} and study the behavior of K
w.r.t. R. We can prove:

P1 (General behavior w.r.t. R) . K is monotone decreasing
and convex for R ∈ (0, R∗], monotone increasing and convex for
R ∈ [R∗, 2R∗], and monotone increasing and concave for R ∈
[2R∗,∞), where R∗ is given below.

P2 (Minimum w.r.t. R) . The minimum R∗ is given by

R∗ =
1 − 2a0a1 + a2

1

1 − a2
1

. (6)

P3 (Maximum w.r.t. R) . In the limits in R, we have

lim
R→0

K = lim
R→∞

K = ∞.

Proofs. The proofs of P1-P3 are straightforward and omitted.
From property P2, it follows that K ≥ 0 with equality if and

only if (i.f.f.) R = 1 and a0 = a1. Note that R∗ > 1 if a1 > a0,
and R∗ < 1 if a1 < a0. This is because, in the model (3), the
sample-by-sample innovation is decreasing in the correlation param-
eter ai and increasing in the signal power σ2

i . If, e.g., a1 > a0, the
sample-wise innovation due to correlation is greater under H0 than
H1. Starting from the case that σ2

0 = σ2
1 and holding σ2

1 fixed,
the detection problem becomes more difficult as σ2

0 decreases, since
this would equalize the overall sample-wise innovation under the
two hypotheses. However, for some value of σ2

0 , further decreasing
σ2

0 makes the detection problem easier, as the overall innovations
under the two hypothesis begins to diverge. It is expected therefore
that 1 < R∗ < ∞ when a1 > a0, which is true.

Next, we fix R and study the variation of K w.r.t. correlation
parameters (d, A0, A1, θ). Substituting (4) into (5), we can prove:

P4 (Vary Ai ) . Let i, j ∈ {0, 1} with i �= j. Fix Aj . Then K is
monotone decreasing for Ai ∈ (0, fi(R)] and monotone increasing
for Ai ∈ [fi(R),∞), where f0(R) and f1(R) are given by the valid
solution to a quadratic and cubic equation, respectively. From these,
it can be verified that fi(1) = Aj , and f0(R) is monotone increasing
in R while f1(R) is monotone decreasing.

P5 (Vary d ) . For R � 1 (R � 1)5,

K(d)

�
↑ ( ↓ ) in d, if A1 < A0 ,

↓ ( ↑ ) in d, if A1 > A0 .

P6 (Vary d ) . In the limits

lim
d→χ

K =

�
1
2

�
log

�
R A1

A0

�
+ 1

R
A0
A1

− 1
�
, for χ = 0,

1
2

	
log R + 1

R
− 1



, for χ = ∞.

Proofs. The proofs of P4-P6 are omitted due to lack of space.
Property P4 is illustrated in Figure 3, where A1 is fixed and

we plot K(A0, R), i.e., K as a function of A0 and R. If R = 1,
K(A0, R) is decreasing for A0 ∈ (0, A1) and increasing for A0 ∈
(A1,∞). If R > 1, this critical point shifts to the right, and if
R < 1, it shifts to the left. Note that the general shape of K versus
A0 varies for different values of R, as shown in the figure. Property
P5 has the following design implication: if R � 1 or R � 1, the
optimal sensor spacing d is chosen to make the signal samples either
independent or maximally correlated, depending on if A0/A1 > 1.
Finally, we note that in P5 and P6, the results hold if d is replaced
by d cos(θ). Thus we can regard d as fixed, and vary cos(θ) instead.

5The notation “↑” ( “↓” ) indicates monotone increasing (decreasing).
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3.3. Numerical Results

Define the finite-N exponential error rate by K(N) � − 1
N

log PM ,
and note that limN→∞ K(N) = K. In Figure 4, we plot K(N), N ∈
{20, 40} (determined numerically), versus R for A0 = 0.5, A1 =
0.2, d = 1, θ = 0, α = 0.01, σ2

1 = R, and σ2
0 = 1. We also

plot K, determined from (5). Note that properties observed in P1-P3
hold for finite N as well: K(N) obeys the convexity structure of
P1, has a minimum when R > 1 as in P2, and achieves maxima as
R → {0,∞}, as in P3. Related simulations are seen to concur with
the properties predicted by P4-P6 (results omitted for brevity).

4. ERROR EXPONENT FOR UNKNOWN LOCATION

When at least one component of (γ, θ) is unknown, (2) cannot be
evaluated. We treat unknowns as nuisance parameters. Let Ω denote
the parameter space of the unknown quantities. We consider three
cases: (1) Ω = Θ, corresponding to γ known, θ unknown, (2) Ω =
Γ, corresponding to γ unknown, θ known, and (3) Ω = Γ × Θ,
corresponding to γ unknown, θ unknown.

4.1. Adaptive Tests

We seek a test that performs well for any value of the unknown pa-
rameter ω ∈ Ω. To this end, we study the existence of adaptive tests,
defined below.

Definition. Given constants {αω}ω∈ Ω, an adaptive test: (i) is
independent of ω, (ii) has false alarm satisfying PF ≤ αω, ∀ω ∈ Ω,
and (iii) achieves the best possible miss probability exponent, i.e.,

lim
N→∞

− 1

N
log PM = Kω, ∀ω ∈ Ω,

where Kω is given by (5) (the subscript ω is used for emphasis).
It follows from (iii) that an adaptive test requires the same asymp-

totic detection performance as if the nuisance parameter were known
a priori, and that the false alarm constraint of such a test can depend
on ω. These features distinguish it from the well known but often
less tractable uniformly most powerful (UMP) test [5]. A necessary
and sufficient condition for the existence of an adaptive test is given
by the following theorem:

Theorem [2]. An adaptive test exists i.f.f. ∀ω0, ω1 ∈ Ω : ω0 �=
ω1,

Kω1 ≤ Kω0,ω1 , (7)

where

Kω0,ω1 � lim
N→∞

1

N
log

p0(s
N
1 | ω = ω0)

p1(sN
1 | ω = ω1)

(a.s. in H0). (8)

Therefore, an adaptive test exists i.f.f. each of the hypothesis
testing problems corresponding to a fixed value of ω is at least as
difficult as when the null hypothesis has a different value.

4.2. Results On the Existence of Adaptive Tests

The existence of adaptive tests in this first scenario can be deter-
mined from an analysis of (8). We have the following result.

Result 1 (R1). For the hypothesis testing problem of (3) and (4),
let θ and γ denote the true values of the target angle and distance, re-
spectively. Let Ω be the parameter space of the nuisance parameter.
We have the following result:

R1.1. If Ω = Θ, no adaptive test exists,
R1.2. If Ω = Γ, an adaptive test exists i.f.f. R=R∗,
R1.3. If Ω = Γ × Θ, no adaptive test exists.

Proofs. The formal proofs of R1.1-R1.3 are omitted due to lack
of space. However, see the commentary below for brief outlines.

Commentary on R1.1. Define the function

F (γ0, γ1, θ0, θ1)

� 1

2
log

�
R

γ1

γ0

1 − μ2
1

1 − μ2
0

�
+

1

2

�
1

R

γ0

γ1

1 − 2μ0μ1 + μ2
1

1 − μ2
1

− 1

�
,

where μi � exp{−Aid cos(θi)}. Note that Kω1 = F (γ, γ, ω1, ω1).
Applying the SLLN in a manner similar to the derivation of (5),
we obtain Kω0,ω1 = F (γ, γ, ω0, ω1). The proof that there ex-
ists ω0, ω1 ∈ Ω such that (7) does not hold proceeds as follows:
Fix ω1 = ω1. Define F(ω0) � Kω1 − Kω0,ω1 . It can be veri-
fied that there always exists a ω1 ∈ Θ such that F(ω0) is a con-
tinuous function with non-zero derivative at ω0 = ω1, and such
that ω1 is not a boundary point of Θ. Since F(ω0 = ω1) = 0,
there exists an ε, |ε| > 0 and arbitrarily small, such that if we fix
ω0 = ω0 = ω1 + ε, we get F(ω0) = F(ω1 + ε) > 0. Thus, there
always exists ω0, ω1 ∈ Θ such that (7) is violated.

Commentary on R1.2. It can be verified that Kω1 = F (ω1, ω1, θ, θ)
and Kω0,ω1 = F (ω0, ω1, θ, θ). Substituting into (7), the proofs of
the necessity and sufficiency of R = R∗ follow from algebraic ma-
nipulation. An intuitive explanation for this result follows. Suppose
R = R∗. Note that the right-hand side of (7) corresponds to a fic-
tional hypothesis test; the same hypothesis test as in (3), but with
an effective ratio of variances given by R = ω1

ω0
R∗. But, by def-

inition, the test (3) is most difficult when R = R∗. Thus, the test
represented by the right hand side of (7) can only be less difficult
for any value of ω0, ω1 ∈ Ω (ω0 �= ω1), and the condition of the
theorem is satisfied. On the other hand, if R �= R∗, then there exists
ω0, ω1 ∈ Ω that can violate the condition in (7), e.g., choose ω0, ω1

such that R = R∗. Therefore, an adaptive test does not exist.

Commentary on R1.3. This result follows from R1. In component-
wise notation, let ωj = (γj , θj). We show that there exists ω0, ω1 ∈
Ω such that (7) is violated. Fix ωj = (γ, θj), for some γ ∈ Γ and
θ0, θ1 ∈ Θ. By the result of R1, there always exists θ0, θ1 ∈ Θ such
that (7) is violated. Thus, ∃ω0, ω1 ∈ Γ×Θ such that (7) is violated.

Results R1.1-R1.3 hold for any choice of the intervals Γ and
Θ that have positive length. Thus, even as we shrink the parameter
space of these unknowns, reflecting an increased a priori knowledge
of the unknown parameters, adaptive tests do not exist (except for
the special case given in R1.2). Adaptive tests exist only in the limit
that the parameter space shrinks to zero, i.e., the known case.

5. ERROR EXPONENT FOR UNKNOWN ENEMY TARGET

We show that under a change of assumptions, adaptive tests exist
for all cases of interest. As a generalization of the model presented
in Section 2, let (γi, θi) denote the location of the target when Hi

is true, where γi ∈ Γ and θi ∈ Θ. It is often reasonable to as-
sume that the location of the target under H0 is known at the fusion
center, if present, but that the location of the target under H1 is un-
known. For example, suppose that H0 corresponds to a friendly
target and H1 to an enemy target in a military application. Below,
we assume that the friendly location (γ0, θ0) is known at the fusion
center (if it is present), whereas the enemy location (γ1, θ1) is ei-
ther unknown or partially known (if present). In parallel with the
development of Section 4, let Ω denote the parameter space of the
unknown parameter(s). We consider three cases: (1) Ω = Θ, corre-
sponding to γ1 known, θ1 unknown, (2) Ω = Γ, corresponding to
γ1 unknown, θ1 known, and (3) Ω = Γ × Θ, corresponding to γ1

unknown, θ1 unknown. An upper bound on performance is provided
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by the case where (γ1, θ1) is perfectly known. A derivation of (2)
with pj(s

N
1 |γ, θ) replaced by pj(s

N
1 |γj , θj), j ∈ {0, 1}, reveals that

K = F (γ0, γ1, θ0, θ1).

We are interested to see if there exists a test that can achieve this
error exponent. We can prove that:

Result 2 (R2). Consider the hypothesis testing problem of (3)
and (4) with the generalization that the target distance and angle are
hypothesis dependent, i.e., (γi, θi) denotes the target location under
Hi. Let (γ0, θ0) be known, and let Ω be the parameter space of the
nuisance parameter. We have the following result:

R2.1. If Ω = Θ, an adaptive test exists,
R2.2. If Ω = Γ, an adaptive test exists,
R2.3. If Ω = Γ × Θ, an adaptive test exists.
Proof. It is sufficient to show the result for Ω = Γ × Θ. Note

that the nuisance parameter is present only under H1. It follows that
Kω1 = Kω0,ω1 , and so condition (7) is satisfied ∀ω0, ω1 ∈ Ω.

Commentary. Comparing R1 and R2, we see that while adaptive
tests do not exist when the target’s location is partially unknown
under both hypothesis (with the exception one case, stated in R1.2),
they do exist when the target location is fully known under H0, for
all degrees of partial knowledge under H1. Suppose that location
knowledge were reversed, so that target location was fully known
under H1, but only partially known under H0. It can be verified
that adaptive tests exist only in rare cases. Again, suggesting that
existence of adaptive tests is sensitive to the modeling assumptions.

6. SUMMARY AND FUTUREWORK

We have studied the Neyman-Pearson miss probability error expo-
nent for target-class detection in a sensor network. When the tar-
get location (γ, θ) is known and common to both hypothesis, we
proved several properties of the error exponent (see P1-P6). When
at least one component of (γ, θ) is unknown under both hypothesis,
we proved that an adaptive test exists in one case of interest (see
R1.1-R1.3). Generalizing to the scenario where the target location
may be different under each hypothesis, i.e., given by (γi, θi) under
Hi, we considered the case where (γ0, θ0) is known perfectly, but
where (γ1, θ1) is only partially known. We proved that adaptive tests
exist for any level of partial knowledge of (γ1, θ1) (see R2.1-R2.3).

As future research, we plan to address the existence of adaptive
tests when the target location is not fully known in a more general
framework than presented here. We also plan to study the exact form
and implementation of such tests.
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Fig. 1. Target class detection. The target belongs to one of two
classes and produces a stochastic signal field with class-dependent
power and correlation structure. Sensors collect N samples of the
signal field with the objective of identifying the target’s class.
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Fig. 2. System model. Each sensor (1, . . . , N) takes a sample of the
signal field. Samples are collected on a straight line with spacing d
and delivered to the fusion center F . The sensor network is in the
far-field of the target T at a relative distance γ, and contours of the
signal intersect the collection line at an angle π/2 − θ.
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Fig. 3. The error exponent K(A0, R) versus A0 for fixed A1

and R = 1, R > 1, and R < 1. Note that f0(R) =
arg minA0 K(A0, R) is increasing in R, and f0(1)=A1.
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Fig. 4. The finite-N exponential error rate for the LRT versus the
number of signal samples collected N . The parameters are A0 =
0.5, A1 = 0.2, d = 1, θ = 0, α = 0.01, σ2

1 = R, and σ2
0 = 1.
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