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ABSTRACT
Achieving consensus on common global parameters through
totally decentralized algorithms is a topic that has attracted
considerable attention in the last few years. Several algo-
rithms have been developed, among which the most popular is
the average consensus method. The main advantage of these
approaches is that they do not require a fusion center. But,
on the other hand, they are typically based on iterative algo-
rithms, whose energy consumption is proportional to the time
necessary to achieve consensus. This time depends on the net-
work topology, as well as on the transmit power of each node.
In this paper, we show that there exists an optimal transmit
power that minimizes the overall energy consumption neces-
sary to achieve the global estimate within a given accuracy
and that this power depends on the network topology.

Index Terms— Average consensus, energy consumption,
algebraic connectivity, distributed estimation.

1. INTRODUCTION

Achieving consensus on a common global parameter through
totally distributed algorithms is a key problem in wireless sen-
sor networks. In centralized schemes, the need to send sen-
sor data to a fusion center causes congestion around the sink
node. With distributed schemes, this congestion is not cre-
ated, and the network becomes more resilient to node failures
and attacks (e.g., an attack on the fusion node could be catas-
trophic). Distributed agreement algorithms have been studied
for a long time; see, e.g. [1]. In recent years, they have re-
ceived considerable attention, in view of their potential appli-
cation in sensor networks. The so called consensus average
method is an example of an algorithm achieving consensus
in a totally distributed way [2]. Signi cant contribution have
also come from the context of multiagent coordination and
ocking [3].
One of the most critical aspects of these consensus al-

gorithms is that they are iterative algorithms where, at each
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step, the network nodes exchange data among each other to
achieve agreement. The network need not be fully connected;
indeed, consensus is achieved locally, with local islands of
agreement expanding, and resulting in global agreement, un-
der appropriate conditions. Consider a network of N nodes.
Let pTi denote the transmit power of the i-th node, assumed
to be constant across the time necessary to achieve consen-
sus. Then, the overall energy spent to reach a common esti-
mate (decision), within a given accuracy (reliability), is E =
Tconv

∑n
i=1 PTi, where Tconv is the time necessary to achieve

global consensus. The convergence rate has been derived
under a variety of situations and it is strictly related to the
network topology. More speci cally, modeling the network
as a graph described by the Laplacian L, the convergence
properties of distributed consensus algorithms depend on the
graph spectral properties, i.e., the set of eigenvalues λi(L),
i = 1, . . . , n, of L. In particular, if the network is connected,
the smallest eigenvalue λ1(L) is zero and it has algebraic
multiplicity one. Furthermore, if the network is connected,
the second smallest eigenvalue λ2(L), known as the network
algebraic connectivity, provides important properties about
network connectivity. More speci cally, in most consensus
algorithms, as we will see in the next section, the convergence
rate is directly proportional to λ2(L). Given the critical role
played by λ2(L), many papers have concentrated on how to
maximize λ2(L) in order to minimize the convergence time,
either rewiring the networks, i.e. by changing the network
topology, as in [4], or by assigning different weights to each
link and then optimizing the weight distribution, as in [5].

In general, however, the most critical parameter in wire-
less sensor networks is typically the energy consumption, which
is directly proportional to the convergence time and to the
transmit power. On one hand, to save energy, we would like
to use the minimum transmit power that ensures network con-
nectivity. But a small transmit power has an effect on the net-
work topology, as it leads to a reduced number of links and,
as a consequence, to a small algebraic connectivity λ2(L).
Hence, a small individual transmit power implies a long con-
vergence time. Conversely, to reduce the convergence time,
the network should have a high connectivity, but this requires
a large transmit power. It is then intuitive to expect an op-
timal trade-off. For simplicity, here we assume that all the
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nodes have the same transmit power. The goal of this pa-
per is to derive the transmit power that yields the minimum
energy consumption, for a given topology. We will consider
networks with deterministic or random spatial distribution of
the nodes. Interestingly, the comparison will clarify whether
it is better to distribute sensors randomly or over a regular
grid, for any given density and coverage area.

2. CONSENSUS ALGORITHMS

Let us denote with x0 the n×1 vector containing the data col-
lected by all the nodes. Consensus algorithms typically work
by endowing each node with a dynamical system that evolves
in time as a function of its own state and of a combination of
the states of the other nodes. Each system is initialized with
the local measurement. If we denote with x(t) the state vec-
tor, at time t, the evolution of all the states is described by the
following equation [4]

ẋ(t) = −Lx(t) (1)

where L is the Laplacian of the graph. The Laplacian is de-
ned as follows. Given an oriented graph G 1 composed of N
vertices and E edges, the incidence matrix B is the N × E
matrix such that [B]ij = 1 if the edge j is incoming to ver-
tex i, [B]ij = −1 if the edge j is outcoming from vertex i,
and 0 otherwise. Given the N × 1 vector 1, composed of
all ones, it is easy to check that the incidence matrix satis-
es 1T B = 0T . Given B, the symmetric N × N ma-
trix L � BBT , is called the Laplacian of G , and it is in-
dependent of the graph orientation. If we associate a pos-
itive number ai to the i-th edge and we build the diagonal
matrix Da � diag(a), with a � [a1, · · · , aE ]T , the Lapla-
cian of the corresponding graph (called the weighted Lapla-
cian) is written as La � BDa BT . The Laplacian and the
weighted Laplacian have several important properties, such
as: L is always positive semi-de nite with the smallest eigen-
value equal to 0; the algebraic multiplicity of the null eigen-
value is equal to the number nc of connected components of
the graph. Hence, if the graph is connected, nc = 1 and
rank(L) = N − 1.
By exploiting the properties of the Laplacian, it is easy to

check that if the state vector x(t) is initialized with the local
measurement, i.e. x(0) = x0, and the network is connected,
then x(t) converges to the average consensus vector

x(t) → 1
N

11T x0. (2)

In words, all states converge to the average value.
In the presence of coupling noise, i.e. adding a noise vec-

tor v(t) to (1), the system still converges in the mean. How-
ever, as already noticed in [5], the running average a(t) :=

1An orientation of a graph G is the assignment of a direction to each edge.

1/N
∑N

i=1 xi(t) is a random walk in this case, so that its vari-
ance increases unboundedly with time. To alleviate this prob-
lem, an algorithm was derived in [5] to compute the weights
ai that minimize the mean square deviation, i.e. Δ(t) :=
E{∑n

i=1(xi(t) − a(t))2}.
To avoid the random walk problem, it is suf cient to as-

sociate the average consensus to the derivative of the state,
rather than to the state itself. An example of this alternative
approach was proposed in [6], [7], where the state evolution
was described by the following equation, for i = 1, ..., N ,

ẋi(t) = gi(xi0) +
K

ci

N∑
j=1

aij f (xj(t) − xi(t)) , (3)

where gi(xi0) is a function of the local measurement xi0,K is
a global control loop gain; ci is a local coef cient that quanti-
es the attitude of the i-th sensor to adapt its values as a func-
tion of the signals received from the other nodes: The larger
ci is, the less likely is the i-th node to change its original
decision gi(xi0). The function f(·) is, in general, a nonlin-
ear function describing the mutual coupling between sensors
and it depends on the radio interface2. The running decision,
or estimate, of each sensor is encoded in its state derivative
ẋi(t).
Using the incidence matrix B, we can rewrite the system

(3) in compact form as

ẋ(t) = g(x0) − K D−1
c B DA f

(
BT x(t)

)
, (4)

wherex(t) � [x1(t), . . . , xN (t)]T ,Dc � diag {c1, . . . , cN};
DA is an E × E diagonal matrix, whose diagonal entries are
all the weights aij , indexed from 1 to E; the symbol f(x)
has to be interpreted as the vector whose k-th component is
f(xk). It was proved in [7] that, if the network is connected,
the function f(x) is monotonically increasing and odd3, and
K is greater than the threshold

KU =
2 ‖DcΔω‖2

fmaxλ2(La)
, (5)

where fmax = max f(x), Δω := g(x0) − ω∗1, with

ω∗ =
cT g(x0)

1T
Nc

=

∑N

i=1
cigi(x0i)

∑N

i=1
ci

, (6)

then the networks achieves global agreement in the sense that
all the state derivatives converge to the common value ω∗, i.e.

·
xi(t) → ω∗, ∀i. (7)

This result was used in [6] and [8] to obtain globally optimal
decision schemes, for estimation or detection, respectively,

2Without loss of generality, f(x) is normalized so that df(0)/dx = 1. A
different value of df(0)/dx can always be included inK.

3Linear coupling, i.e., f(x) = x, is then included as a particular case.

II  842



in a totally distributed way. In the case of linear coupling
fmax = ∞, the critical valueKU = 0 and the network always
converges (provided that it is connected).

3. ENERGY CONSUMPTION

All the consensus techniques presented in the previous section
have a convergence rate proportional to the algebraic connec-
tivity λ2(La). Hence, from the point of view of convergence
time, they can all be treated using the same formulation. In the
case of a weighted Laplacian, La := BDaB

T , the weights
ai, could be chosen to maximize the algebraic connectivity
λ2(La) of the weighted graph [5]. However, sometimes, as
in the case studied in this paper, the weights are simply the
channel coef cients and so they are given.
Let us evaluate now the total energy spent to reach the -

nal estimate, within a speci ed accuracy. For mathematical
tractability reasons, we consider the simple case where all the
nodes transmit with the same power pT . In a wireless net-
work, the connectivity (and thus the Laplacian of the graph)
depends on the transmit power of each node (as well as the
properties of the propagation medium, such as the power-law
attenuation factor, fading and shadowing), so that the alge-
braic connectivity λ2(La) depends on pT . The convergence
time is proportional to 1/λ2(La). The total energy consump-
tion is then

E =
NpT

λ(La(pT ))
, (8)

where we have made explicit the dependence of λ(La(pT ))
on the transmit power pT .
Let us now see how the network topology changes with

pT . The topological model depends on two sources of ran-
domness, in general: the spatial distribution of the nodes and
the channel fading. Furthermore, a link between two nodes
is established if the received power is greater than a threshold
pRmin (the SINR model).
Let us consider the case with no fading. The received

power pR depends on the transmit power and on the trans-
mit/receive distance r as pR = pT

rη , where η is the path loss
exponent (typically between 2 and 6). This means that, in
the absence of fading, there is a link between any two nodes
i and j if their distance rij is smaller than a critical range

r0 :=
(

pT

pRmin

)1/η

. If the nodes are randomly distributed on
a plane and the links are established according to the previous
rule, the graph describing the network is a random geometric
graph. We consider a ring topology rst, where it is possible
to obtain closed form expressions. Then we will consider the
more practical planar case.

Ring topology
A ring topology is composed of nodes uniformly spaced

over a ring of radius R. This is a regular topology where
all the nodes have the same degree, say d. Furthermore, the

Laplacian has a circulant Toeplitz structure that facilitates closed-
form computation of the algebraic connectivity:

λ2 = 4
d/2∑
i=1

sin2(π i /N) = d + 2
sin( πd

2N )
sin( π

N )
cos(

π

N
(1 +

d

2
))

For xed d, λ2 decreases asN increases; for xed d/N , it in-
creases withN . In our set-up the degree d is a function of the
transmit power, i.e. d = d(pT ). The total energy consump-
tion is then

E =
NpT

4
∑d(pT )/2

i=1 sin2(π i /N)
(9)

As an example, in Fig. 1, we report the energy consumption,
as a function of the transmit power pT , for different values
of the path loss exponent. Interestingly, we observe that when
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Fig. 1. Total energy consumption as a function of the local
transmit power for a ring topology network.

the cost of communication is low (the path exponent is small),
it is better to have full connectivity to reach consensus more
rapidly. Conversely, when the cost of communication is high
(the path loss exponent is high), it is better to have minimum
connectivity to save energy.

Planar topology
An interesting question arising in the design of sensor net-

works is: Given a certain coverage area and number of nodes,
is it better to distribute the nodes randomly or over a regular
grid? To provide an answer to this question, we considered
two planar networks, composed ofN nodes distributed over a
square of unit side: one with nodes randomly distributed over
the square and the other with nodes placed over a rectangular
grid. To get rid of any undesired border effect, we consider a
toroidal surface. In both cases, we consider a power decaying
law pR = pT /(1 + r2), to avoid the unrealistic situation in
which the receive power is greater than the transmit power.
In Fig. 2, we report the total energy consumption E , as com-
puted in (8), vs. the transmit power pT . The number of nodes
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Fig. 2. Total energy consumption as a function of the local
transmit power for regular and random networks.

is N = 100. In the random graph case, we report a few sim-
ulations run over 100 independent generations of the spatial
points. From Fig. 2, we can draw two important conclusions:
1) there always exists an optimal pT that minimizes the over-
all energy consumption; 2) the random graph requires, prac-
tically, the same global energy than the regular graph. As
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Fig. 3. Algebraic connectivity of the networks of Fig. 1.

expected, the algebraic connectivity for the two topologies is
very similar, and this explains the result of Fig. 2.
The behavior shown in Fig.2 can be explained by recall-

ing the results of [9], where it was shown that all nodes of
a random geometric graph, with nodes located over a unit
area toroidal surface, tend to have, for large N , the same de-
gree d = πNr2

0 , with high probability (i.e., with probability
greater than 1 − 1/N2). But a uniform grid, located again
on a unit area toroidal surface, is also a regular graph with
degree approximately equal to πNr2

0 , for large N . Hence,
for large N , uniform and random geometric graphs tend to
behave similarly. This statement is also con rmed by Fig.
3, where we report the algebraic connectivity for the same

case analyzed in Fig. 2. The results shown in this paper
represent only a rst step in the minimization of the energy
necessary to reach a consensus through a decentralized, it-
erative, mechanism. Several extensions are worth of being
analyzed. We have considered, for simplicity, only the case in
which the transmit power is the same for all the nodes. This
has been a simplifying assumption that has reduced the num-
ber of unknowns to one. In general, it will be interesting to
formulate the optimization problem where we minimize the
total energy consumption (8) with the respect to the vector
of powers transmitted by each node p = (p1, p2, . . . , pN ).
Another extension concerns the inclusion of proper channel
fading models. Moreover, in sensor networks, energy spent
for processing by the receiver can be a signi cant factor that
should properly be taken into account.
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