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ABSTRACT

We consider the problem of decentralized binary hypothesis testing
in a network of sensors arranged in a tandem. We show that the
rate of error probability decay is always sub-exponential, establish-
ing the validity of a long-standing conjecture. Under the additional
assumption of bounded Kullback-Leibler divergences, we show that
for all d > 1/2, the error probability is Ω(e−cnd

), where c is a posi-
tive constant. Furthermore, the bound Ω(e−c(log n)d

), for all d > 1,
holds under an additional mild condition on the distributions. This
latter bound is shown to be tight.

Index Terms— Decentralized detection, tandem, serial network,
error exponent, tree network.

1. INTRODUCTION

Consider a tandem network, as shown in Figure 1, with n sensors,
each sensor i observing a random variable Xi, taking values in X .
Under hypothesis Hj , j = 0, 1, Xi has marginal law Pj , and all
the Xi are independent. Sensor i is constrained to sending a 1-bit
message Yi to sensor i + 1, of the form Yi = γi(Yi−1, Xi) (Y0 can
be de ned to be always 0), where γi : {0, 1} × X �→ {0, 1}. The
transmission function γi used by sensor i is thus a function of the
observed Xi and the received message Yi−1 from sensor i − 1. We
call the collection (γ1, . . . , γn) a strategy for the n-sensor tandem
network.

Let πj > 0 be the prior probability of hypothesis Hj , and let
Pe(n) = π0P0(Yn = 1)+π1P1(Yn = 0) be the probability of error
at sensor n. The goal of a system designer is to design a strategy
so that the probability of error Pe(n) is minimized. Let P ∗e (n) =
inf Pe(n), where the in mum is taken over all possible strategies.
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Fig. 1. A tandem network.

This research was supported, in part, by the National Science Founda-
tion under contracts ECS-0426453, ANI-0335256 and ECS-0636519, the
Charles Stark Draper Laboratory Reduced Complexity UWB Communica-
tion Techniques Program, an Of ce of Naval Research Young Investigator
Award N00014-03-1-0489, and DoCoMo USA Labs.

The problem of nding optimal strategies has been studied in
[1–3], while the asymptotic performance of a long tandem network
(i.e., n → ∞) is considered in [2, 4–8] (some of these works do not
restrict the message sent by each sensor to be binary). In the case
of binary communications, [4, 8] nd necessary and suf cient con-
ditions under which the error probability goes to zero in the limit
of large n. To be speci c, the error probability stays bounded away
from zero iff there exists a B < ∞ such that | log dP1

dP0
| ≤ B almost

surely. When the log-likelihood ratio is unbounded, numerical ex-
amples have indicated that the error probability goes to zero much
slower than exponentially. This is to be contrasted with the case of
a parallel con guration (all sensors send messages γi(Xi) directly
to a single fusion center), where the error probability decays expo-
nentially fast with the number of sensors n [9]. This suggests that a
tandem con guration performs worse than a parallel con guration,
when n is large. It has been conjectured in [2, 8, 10, 11] that indeed,
the rate of decay of the error probability is sub-exponential. How-
ever, a proof is not available. The goal of this paper is to prove this
conjecture.

We rst note that there is a caveat to the sub-exponential decay
conjecture: the probability measures P0 and P1 need to be equiv-
alent, i.e., absolutely continuous w.r.t. each other. Indeed, if there
exists a measurable set A such that P0(A) > 0 and P1(A) = 0,
then an exponential decay rate can be achieved as follows: each sen-
sor always declares 1 until some sensor m observes a Xm ∈ A,
whereupon all sensors i ≥ m declare 0. For this reason, we assume
throughout the paper that the measures P0 and P1 are equivalent.
Under this assumption, we show that

lim
n→∞

1

n
log P ∗e (n) = 0.

When the error probability goes to zero, we would also like to
quantify the best possible (sub-exponential) decay rate. In this spirit,
we nd lower bounds on the probability of error, under the further
assumption of bounded Kullback-Leibler (KL) divergences. In par-
ticular, we show that for any d > 1/2, and some positive constant
c, the error probability is Ω(e−cnd

).1 Under some further mild as-
sumptions, which are valid in most practical cases of interest, we
establish the bound Ω(e−c(log n)d

) for all d > 1, and show that it is
tight.

The rest of the paper is organized as follows. In Section 2, we
show that the error probability decays sub-exponentially. In Section
3, we derive more detailed lower bounds on the error probabilities. In

1If f and g are nonnegative functions on the nonnegative integers, we
write f(n) = Ω(g(n)) if there exists aK such that f(n) ≥ Kg(n) for all
n suf ciently large.
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Section 4, we establish tightness of one of our lower bounds. Finally,
Section 5 contains concluding remarks.

2. SUB-EXPONENTIAL DECAY

In this section we show that the rate of decay of the error probability
is always sub-exponential. Although the proof is simple, we have
not been able to nd it in the literature. Instead, all works on this
topic, to our best knowledge, have only conjectured that the decay is
sub-exponential, with numerical examples as supporting evidence.

Let Li = log dP1

dP0
(Xi) be the log-likelihood ratio associated

with the observation made by sensor i. From [1, 8, 10, 12], there is
no loss in optimality if we require each sensor to form its messages
by using a Log-Likelihood Ratio Quantizer (LLRQ), i.e., a rule of
the form

Yi =

{
0, if Li ≤ ti,n(y),
1, otherwise, (1)

where ti,n(y) is a threshold whose value depends on the message
Yi−1 = y received by sensor i. In the sequel, we will assume, with-
out loss of optimality, that all sensors use a LLRQ. Moreover, the
existence results from [12]), together with Proposition 4.2 in [10]
gives us the following result.

Lemma 1. There exists an optimal strategy under which each sensor
uses a LLRQ, with thresholds that satisfy ti,n(1) ≤ ti,n(0) for all
i = 1, . . . , n.

In view of Lemma 1, we can restrict to strategies of the form

γi(Yi−1, Xi) =

⎧⎨
⎩

0, if Li ≤ ti,n(1),
1, if Li > ti,n(0),
Yi−1, otherwise,

where ti,n(1) ≤ ti,n(0). Note that this is the type of strategies used
in [4] to show that the error probability converges to zero.

Proposition 1. The rate of decay of the error probability in a tandem
network is sub-exponential, i.e.,

lim
n→∞

1

n
log P ∗e (n) = 0.

Proof. Suppose that P ∗e (n) → 0 as n → ∞, else the proposition
is trivially true. Fix some n and consider an optimal strategy for the
tandem network of length n. We have, for all i,

P0(Yi = 1) = P0(Li > ti,n(0))P0(Yi−1 = 0)

+ P0(Li > ti,n(1))P0(Yi−1 = 1) (2)
P1(Yi = 0) = P1(Li ≤ ti,n(0))P1(Yi−1 = 0)

+ P1(Li ≤ ti,n(1))P1(Yi−1 = 1) (3)

From (2) and (3), with i = n, and applying Lemma 1, we have

P ∗e (n) = π0P0(Yn = 1) + π1P1(Yn = 0)

= π0

(
P0(Ln > tn,n(0)) + P0(tn,n(1) < Ln ≤ tn,n(0))

· P0(Yn−1 = 1)
)

+ π1

(
P1(Ln ≤ tn,n(1)) + P1(tn,n(1) < Ln ≤ tn,n(0))

· P1(Yn−1 = 0)
)

(4)

≥ min
j=0,1

Pj

(
tn,n(1) < Ln ≤ tn,n(0)

)
P ∗e (n− 1) (5)

From (4), in order to have P ∗e (n) → 0 as n → ∞, we must have
P0(Ln > tn,n(0)) → 0 and P1(Ln ≤ tn,n(1)) → 0, as n → ∞.
Because P0 and P1 are equivalent measures, we also have P1(Ln >
tn,n(0)) → 0 and P0(Ln ≤ tn,n(1)) → 0, as n → ∞. Hence,
Pj(tn,n(1) < Ln ≤ tn,n(0)) → 1 for j = 0, 1. Therefore, from
(5), the error probability cannot decay exponentially fast.

We have established that the decay of the error probability is
sub-exponential. This con rms that the parallel con guration per-
forms much better than the tandem con guration when n is large. It
now remains to investigate the best performance that a tandem con-
guration can possibly achieve. In the next section, we use a more
elaborate technique to derive a lower bound for the error probabil-
ity. Due to space limitations, some of the proofs are omitted, or only
sketched; they can be found in [13].

3. RATE OF DECAY

In this section, we show that under the assumption of bounded KL
divergences, the error probability is Ω(e−cnd

), for some positive
constant c and for all d > 1/2. Under some additional assumptions,
the lower bound is improved to Ω(e−c(log n)d

), for any d > 1. The
ideas in this section are inspired by the methods in [1] and [14].
In particular, we rely on a sequence of comparisons of the tandem
con guration with other tree con gurations, whose performance can
be quanti ed using the methods of [14].

Our results involve the KL divergences, de ned by

x̄0 = E0

[
log

dP1

dP0

]
,

x̄1 = E1

[
log

dP1

dP0

]
.

We assume that −∞ < x̄0 < 0 < x̄1 < ∞ throughout this section.
Let k andm be positive integers, and let n = km. Let us com-

pare the following two networks: (i) a tandem network, as in Figure
1, with n sensors, where each sensor i obtains a single observation
Xi; (ii) a modi ed tandem network T (k, m), as in Figure 2, with
k sensors, where each sensor vi obtains m (conditionally) indepen-
dent observationsX(i−1)m+1, . . . , Xim, given either hypothesis. In
both networks a sensor sends a binary message to its successor. It
should be clear that when we keep the total number of observations
n = km the same in both networks, the network T (k, m) can per-
form at least as well as the original one. Indeed, each sensor vi in the
modi ed network can emulate the behavior ofm sensors in tandem
in the original network.

Therefore, it suf ces to establish a lower bound for the error
probability in the network T (k, m). Towards this goal, we will use
some standard results in Large Deviations Theory, notably Cramér’s
Theorem [15], as stated in the lemma below.{ {{

v1v2vk

m m m

1 bit 1 bit 1 bit

Fig. 2. A modi ed tandem network T (k, m) that outperforms a tan-
dem network with n = km sensors.
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Lemma 2. Suppose that −∞ < x̄0 < 0 < x̄1 < ∞, and that
X1, X2, . . . are i.i.d. under either hypothesisHj , with marginal law
Pj . Let Sm =

∑m
i=1 Li, and for j = 0, 1, let Λ∗j (t) = sup

ξ∈R

{ξt −

log Ej

[(
dP1

dP0

)ξ]}.
(i) For every ε > 0, there exist a ∈ (0, 1), c > 0, and M ≥ 1,
such that for allm ≥ M ,

P0(Sm/m > x̄1 + ε) ≥ ae−mc,

P1(Sm/m ≤ x̄0 − ε) ≥ ae−mc.

(ii) Suppose that E1

[(
dP1

dP0

)s]
< ∞ for some s > 0. Then, there

exists some ε > 0, such that Λ∗1(x̄1 + ε) > 0, and

P1(Sm/m ≤ x̄1 + ε) ≥ 1− e−mΛ∗

1
(x̄1+ε), ∀m ≥ 1.

(iii) Suppose that E0

[(
dP1

dP0

)s]
< ∞ for some s < 0. Then, there

exists some ε > 0, such that Λ∗0(x̄0 − ε) > 0, and

P0(Sm/m > x̄0 − ε) ≥ 1− e−mΛ∗

0
(x̄0−ε), ∀m ≥ 1.

(iv) Suppose that E1

[(
dP1

dP0

)s]
= ∞ for all s > 0. Then, for every

ε > 0, there exists someM ≥ 1 such that for allm ≥ M ,

P1(Sm/m ≤ x̄1 + ε) ≥ 1/2.

Moreover, if for some integer r ≥ 2, E1

[∣∣ log dP1

dP0

∣∣r] < ∞,
then there exists some cr > 0 such that

P1(Sm/m ≤ x̄1 + ε) ≥ 1− cr

mr/2εr
, ∀m ≥ 1.

(v) Suppose that E0

[(
dP1

dP0

)s]
= ∞ for all s < 0. Then, for every

ε > 0, there exists someM ≥ 1 such that for allm ≥ M ,

P0(Sm/m > x̄0 − ε) ≥ 1/2.

Moreover, if for some integer r ≥ 2, E0

[∣∣ log dP1

dP0

∣∣r] < ∞,
then there exists some cr > 0 such that

P0(Sm/m > x̄0 − ε) ≥ 1− cr

mr/2εr
, ∀m ≥ 1.

Proof. Omitted for brevity.

We now state our main result. Note that the condition in part (i)
of the proposition below implies that Ej

[∣∣ log dP1

dP0

∣∣r] < ∞ for all r,
but the reverse implication is not always true.

Proposition 2. Suppose that −∞ < x̄0 < 0 < x̄1 < ∞.
(i) Suppose that there exists some ε′ > 0 such that for all s ∈

[−ε′, 1 + ε′], E0

[(
dP1

dP0

)s]
< ∞. Then,

lim
n→∞

1

(log n)d
log P ∗e (n) = 0,

for all d > 1.
(ii) Suppose that E0

[(
dP1

dP0

)s]
= ∞ either for all s > 1 or for all

s < 0. Then

lim
n→∞

1

nd
log P ∗e (n) = 0,

for all d > 1/2.
Furthermore, if for some integer r ≥ 2, Ej

[∣∣ log dP1

dP0

∣∣r] < ∞
for both j = 0, 1, then the above is true for all d > 1/(2 +
r/2).

Proof. (Outline) For part (i), we lower bound the error probability
of a tandem network by the error probability of a modi ed network
T (k(m), m), where k(m) = exp(ml), and l ∈ (1/d, 1). Then, ap-
plying Lemma 2, we get the desired conclusion. A similar argument
works for part (ii).

4. TIGHTNESS

Part (i) of Proposition 2 gives a bound of the form Ω(e−c(log n)d

),
for every d > 1. In this section, we show that this family of bounds
is tight, in the sense that it cannot be extended to values of d less
than one. This is accomplished by constructing an example in which
the error probability is O(e−c(log n)d

), with d = 1, i.e., the error
probability is of the order O(n−c) for some c > 0.

Our example involves a Gaussian hypothesis testing problem.
We assume that under Hj , X1 is distributed according to a normal
distribution with mean 0 and variance σ2

j , where 0 < σ2
0 < 1/2 <

σ2
1 . We rst check that the condition in part (i) of Proposition 2 is
satis ed. We have

dP1

dP0
(x) =

σ0

σ1
e
−

x
2

2

(
1

σ2
1

−
1

σ2
0

)
,

and (using the formula for the moment generating function of a χ2

distribution),

E0

[(dP1

dP0

)s]
=

(σ0

σ1

)s

E0

[
e

s

2

(
1−σ2

0
/σ2

1

)
(X1/σ0)2]

=
(σ0

σ1

)s( 1

1− s
(
1− σ2

0/σ2
1

))1/2

< ∞,

if s < 1/(1−σ2
0/σ2

1). Hence, the condition in part (i) of Proposition
2 is satis ed.

Fix some n and let an =
√

log n. We analyze the rate of decay
of error probability of a particular sub-optimal strategy considered
in [8], which is the following:

γ1(X1) =

{
0, ifX2

1 ≤ a2
n,

1, otherwise,

and for i ≥ 2,

γi(Yi−1, Xi) =

{
0, ifX2

i ≤ a2
n and Yi−1 = 0,

1, otherwise.

Thus, the decision at sensor n is Yn = 1 iff we have X2
i > a2

n for
some i ≤ n.

Proposition 3. With the above described strategy, the probability of
error is O(n−c), for some c > 0.

Proof. Omitted for brevity.

We note that in most cases, the rate n−c is not achievable. For
example, consider the more common case of detecting the presence
of a known signal in Gaussian noise: under H0, the distribution of
X1 is normal with mean −μ and variance 1, while under H1, the
distribution is normal with mean μ and variance 1. A numerical
computation indicates that the optimal error probability decay is of
the order exp(−c

√
log n) (see [2] and Figure 3). Finding the exact

decay rate analytically for particular pairs of distributions seems to
be dif cult because there is no closed form solution for the optimal
thresholds used in the LLRQ decision rule at each sensor [8], except
for distributions with certain symmetric properties [2].
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Fig. 3. A plot of the optimal error probability as a function of the
number of sensors, for the problem of detecting the presence of a
known signal in Gaussian noise. The optimal thresholds for the LL-
RQs at each sensor are given in [2]. For large n, the plot is almost
linear.

5. CONCLUSION

In this paper, we have shown that, in Bayesian decentralized detec-
tion, using a long tandem of sensors, the rate of decay of the er-
ror probability is sub-exponential. In order to obtain more precise
bounds, we introduced a modi ed tandem network, which outper-
forms the original one, and used tools from Large Deviations Theory.
Under the assumption of bounded KL divergences, we have shown
that the error probability is Ω(e−cnd

), for all d > 1/2. Under the
further assumption that the moments (under H0) of order s of the
likelihood ratio are nite for all s in an interval that contains [0, 1] in
its interior, we have shown that the lower bound can be improved to
Ω(e−c(log n)d

), for all d > 1, and that this latter bound is tight.
In our model, we have assumed binary communication between

sensors, and we have been concerned with a binary hypothesis test-
ing problem. The question of whether k-valued messages (with
k > 2) will result in a faster decay rate, or even an exponential
decay rate, remains open. In the case ofm-ary hypothesis testing us-
ing a tandem network where each sensor observation is a Bernoulli
random variable, [6] shows that using (m + 1)-valued messages
is necessary and suf cient for the error probability to decrease to
0 as n increases. However, it is unknown what the decay rate is.
Nevertheless, we conjecture that the error decay rate is always sub-
exponential.
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