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ABSTRACT

Sensor localization methods based on Monte Carlo sam-
pling approximate the sensor position distributions by a
weighted set of samples. These approaches traditionally re-
quire complete knowledge of the probabilistic distributions
of the uncertainties in the sensor system. In this paper, we
propose alternative sampling-based methods which do not re-
quire complete knowledge of the probabilistic distributions.
The sensor position distributions are represented by a set of
samples and costs which are described by spatial paramet-
ric regions. Few parameters are needed to characterize these
regions, and therefore the amount of information to be trans-
mitted to the rest of the sensors to self-localize is simplified.
Computer simulations show that the proposed methods are
more robust and less computationally intensive than standard
sampling approaches.

Index Terms— Multisensor systems, Monte Carlo meth-
ods, self-localization.

1. INTRODUCTION

In many sensor networking applications like target tracking
the sensed signals are functions of the distance between the
target and the sensor. These signals are then processed to
obtain the dynamics of the target. This processing requires
precise information of the sensors’ locations. In other scenar-
ios, sensors are randomly deployed or subject to mobility due
to climatic conditions. To obtain location information, ad-
vanced positioning technologies like GPS can be integrated
into the sensor system. However, this infrastructure increases
the overall cost of the sensors and prevents from their dense
deployment and ubiquitous use [1]. To avoid such situations,
it is desirable that sensors localize themselves. The process
by which sensors collaborate to obtain information about their
positions is known as self-localization (SL).

Sensor SL is commonly addressed using beacon nodes
also known as anchor nodes, leader nodes or access points.
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We use the term beacon nodes when referring to sensors
which have some initial location information about their
positions. Maximum likelihood-based methods for SL in
a centralized sensor systems have been proposed in [1, 2,
3]. Distributed Bayesian methods for SL have been also
presented in [4, 5]. There, each sensor node computes its
‘belief’ about its location and broadcasts its marginal position
distribution to its neighbors. An advantage of the Bayesian
techniques is that they provide a principled way of dealing
with location uncertainty and multi-sensor fusion [6]. A more
comprehensive survey of SL in sensor networks is provided in
[1, 7] and the references therein.

In this paper we address the problem of distributed SL
in sensor networks using Monte Carlo-based sampling meth-
ods with beacon position uncertainty and the absence of com-
plete knowledge of the distribution of the sensor measurement
noise. Under these constraints we attempt to design algo-
rithms that can deal with position uncertainty and fuse data
from multiple sensors. In brief, the algorithm initiates with
beacon nodes broadcasting their location information. Sen-
sor nodes with unknown positions utilize this beacon location
information and the characteristics of the received signals to
resolve their locations. A sample-based representation of the
sensor location distribution is obtained and each sample is as-
sociated with a cost, which reflects the “importance” of the
sample.

The organization of the paper is as follows. In Section 2,
we state the sensor SL problem; in Sections 3 and 4 we de-
scribe probabilistic and novel cost-based sampling algorithms
for SL, respectively. We provide some simulation results in
Section 5 and conclude the paper with Section 6.

2. PROBLEM STATEMENT

We motivate the problem of sensor SL by Fig. 1. There,
beacon nodes 1, 2 and 3 broadcast their position information
using known pilot signals or reference signals. Sensor 1
gathers this information and uses the characteristics of the
received signal to resolve its sensor position. Sensor 2, being
far away from beacon 2, does not receive any of its prior
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Fig. 1: Sensor network

information and therefore is unable to resolve its position
uniquely. In the next iteration, sensor 1 also transmits its
position information which is utilized by sensor 2 along with
the signals from beacons 1 and 3 to resolve its position
information.

The problem of distributed sensor SL is mathematically
expressed as follows. Beacon nodes broadcast the prior
information about their positions £, € R2, b = 1,2, --- N,
We represent this prior information as p(£y ), which represents
a standard probabilistic distribution or a parametric spatial
distribution. The signal received by the sensor can be
modeled as

f(esy eb) + Vs, b, (1)

where y,p is the received signal characteristic by sensor
s from beacon b; £,,£, € R? are the positions of the
nodes s and b in the two dimensional Cartesian coordinate
system (€5 = [ZS73;,ls7y]T and £, = [lbg,;,lb_yy]—r); and vy p
is a noise process. Commonly used signal characteristics
for localization are (a) received signal strength (RSS), (b)
time of arrival (TOA), (c) time difference of arrival (TDOA),
and (d) angle of arrival (AOA) of the signal received at the
sensor nodes [1, 7]. The corresponding form of function
f(-) of these modalities is shown in Table 1. There ¥
is the power received at a known reference distance; « is
the path-loss attenuation parameter; c is the velocity of the
transmitted signal; and |- | denotes norm of a vector. When the
distribution of the measurement noise process is known, can
we obtain the sensors’ location posterior distribution using
the measurements and beacon prior location information and
in absence of such knowledge, can we still obtain the sensors’
location distributions? We attempt to answer these questions
in the following sections.

Ysb =

3. SENSOR SL UNDER KNOWN NOISE
PROBABILISTIC DISTRIBUTIONS

Here we briefly review the algorithm presented in [5]. Con-
sider the scenario where a sensor s receives signals from three

Ys.,b f(zsa Eb)

RSS U — 10 logyg (|€s — €))
TDOA )

AOA arctan <7§Zj:i)

Table 1: Sensing modalities

beacon nodes!. The beacons transmit their location prior in-
formation, p(£1), p(€2) and p(£3). The joint posterior density
of the beacons and sensor’s locations, £ = [£,, €1, £, €3] T,
can be written as

3
P Ys,1,Ys,2,Ys,3) X p(€ H (Ys,p | £, €)p(Ls), (2)

where we have assumed independence among the prior distri-
butions. As it can be seen from Table 1, the received reference
signals are nonlinear functions of the beacon and sensor loca-
tions. In [5], a Monte Carlo approximation of the posterior
distribution was obtained as

Z wims (£, — &™) ﬁ(s (6-4"), ®
b=1

m=1

where w(™)

P P rlas |67 67 E™)

A set of M samples representing the beacons and sensors’
locations are drawn from proposal functions, ¢(€;),b = 1,2,
and 3 and ¢(€,) which do not require knowledge of the sensor
measurement noise process [5]. Using the drawn samples
marginal distributions of the sensor location, £, can be easily
obtained from (3).

4. SENSOR SL UNDER UNKNOWN NOISE
PROBABILISTIC DISTRIBUTIONS

In the above sampling algorithm, computation of the weights
in (4) requires a complete knowledge of the probabilistic dis-
tributions of the measurement noise. In many scenarios such
probabilistic knowledge may not be available. Therefore,
we propose an alternative Monte Carlo sampling algorithm
for obtaining sensor location distributions. These algorithms
only require that the noise terms in (1) be zero mean dis-
tributed .

We consider the problem stated in Section 2, where a par-
ticular sensor s receives location information from beacon
nodes 1, 2, and 3 and attempts to obtain its location infor-
mation. Under assumption of zero mean noise, a typical cost

'We simplified the problem to one sensor resolving its position from three
beacons’ information. The extension of the problem for a complete network
is straightforward.
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criterion for obtaining the sensor location given the measure-
ments Y, 1, Ys,2, Ys,3 can be formulated as y, 1, Ys,2, ¥s,3 can
be formulated as

3
i, = argnéin {C(Es) = Z [|lys.p — f(ES,Eb)|2} . (6)
b=1

Taking as a starting point this optimization formulation we
propose a sampling procedure for SL with the following steps:

e Generation of samples: Beacons’ location samples are
drawn from the prior distributions and the sensor location
samples are drawn from a proposal function as in [5]. A set
{60 g™ g{m) pmIAM_ o M samples is thus obtained.

e Computation of costs: Using the signal measurements,
we obtain the residuals € = y,, — f(£™, £™). Each
sample in the set is associated with a cost using these
residuals. The costs, C("), are computed using user-defined
cost functions, o(-), as

3

ctm = 3" o(el}), @
b=1

such that samples with small residuals have small costs and

samples with large residuals have large costs. We utilized the

following cost functions in our experiments:

1. L2 Cost Function: o(¢) = |e|?

2. L1 Cost Function: g(€) = ||

3. “Fair” Cost Function: o(¢) = 2k? [% —log(1+ %)}

with & = 1.3998 [8].

We form a pseudo-probability mass function (pmf) with

random measure Q™) = {7 (™) ™) p{m) p(m) plm)y

where

=1

™)y ﬁ with Y 7™y =1 (8)
m
e Calculation of the spatial sensor location distributions: Us-
ing the measure {Q(m) M_ ., the sensor location distribution
can be described by a simple spatial distribution, R, e.g.,a
square, circular or elliptical region. One way of obtaining
the parameters of these spatial distributions is through the
mean and covariance matrix of the sensor location distribu-

tion which are computed as

M
g~ > w™em
) m]\jl §
S, o~ YA (67— g, ) (€0 - g )
m=1
_ (?zs,m ffzs,xy>_ ©)
es,lliﬂ es:l/y

Once these parameters are computed, the spatial regions are
defined as follows:

o Square region: It is completely characterized by its
center, p,., and the length of a side, p.. We represent
this region, R, as Sq(i,,py) with p, = frp and p. =

7 max( 2&& v ’\/Q&ES yy) where T is a scaling factor. We

have chosen 7 = 2 in all our experiments.

o Circular region: It is specified by its center, p,, = ﬁes,
and radius, p,. We represent the region as R = Ci(e,., pr)
with p, = firp and p, = Trnax(\/Qﬁes,m , \/Q&ES,yy)'

o Elliptical region: Itis described by its center, 1, = fiyp ,
the lengths of its major and minor axis, p, and pp, and the
angle of inclination of the major axis with respect to the
horizontal direction, ¢. The region R can be represented as
El(,., pa, P, @) and its parameters are obtained using (5).

Other kinds of inclined spatial regions can be similarly
constructed. Also, our method can be implemented with any
computable cost function and not the conventional ‘L2’ cost
function only.

Once a sensor resolves its position, it broadcasts the
parameters describing its location. In the next iteration other
sensors will be able to localize themselves and the procedure
continues repeating.

5. SIMULATIONS AND DISCUSSION

We considered a network as shown in Fig. 2, with 48
randomly distributed sensors and 16 beacons. The prior
location distributions of the beacon nodes were modeled
using Gaussian distributions N (g, , 021I) with pu;, = [lp 5 +
0,1y, + 0] T where 6 represents a bias in the beacon location
information. In all our simulations we assumed # = 1 and
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Fig. 2: Sensor network

I - 835



CDF of RMSE
o o
[

[
IS

Circle |7

- = = Ellipse
Square [

~—#— Prob
I

5}
L
o

3 4 6 7
RMSE

Fig. 3: Performance of the methods in terms of the CDF of
the RMSEs

02 = 0.5. In our experiments we considered the RSS signal
model with ¥ = —50dB and a = 2.5.

We performed two sets of simulations. In the first
simulation experiment we modeled the measurement noise
across all the sensors as a Gaussian process with p, = 0
and o, = 1. The algorithms ran for 5 iterations and the
root mean square errors (RMSEs) of all the sensors were
computed for 25 such runs. Fig. 3 shows the cumulative
distribution function (CDF) of the RMSEs of all the sensors
with the probabilistic algorithm (labeled as ‘Prob’) and the
cost-based sampling algorithm with the L2 Cost Function and
different spatial distributions (labeled as ‘Circle’, ‘Ellipse’,
‘Square’). In all the simulations the total number of samples
drawn for estimating the costs and weights was M=2000. We
can see that all the methods had similar performance.

We conducted another set of simulations to study the ro-
bustness of the algorithms when we do not have information
about the distributions. The probabilistic algorithm assumed
wrong measurement noise distribution p(v) = N(0,0.2%)
while the true distribution of the noise was p(v) = 0.8NM(0,1)+
0.2N(3,0.22). In Fig. 4, the CDF of the RMSEs averaged
over all the sensors is shown for all the considered algorithms.
It can be seen that the performance of all the cost-based meth-
ods is similar and 90% of the sensors’ locations are within
3m. With the probabilistic algorithm with wrong noise statis-
tics 90% of the sensors’ locations were within 12m. Clearly
this plot shows the robustness of the proposed algorithms and
the sensitivity of the probabilistic algorithm to the knowledge
of the distributions of the noises.

6. CONCLUSIONS

In this paper we have introduced simple sampling-based al-
gorithms for determining sensor location distributions. Simu-
lation results show the robustness of the proposed algorithms
to outliers and modelling errors. The algorithms only require
the mean of the measurement noise to be zero. Future work
involves the removal of this assumption and design of com-
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Fig. 4: Robustness of the proposed methods in terms of the
CDF of the RMSEs

pletely blind algorithms for sensor self-localization.

7. REFERENCES

[1] N. Patwari et al, “Locating the nodes: cooperative
localization in wireless sensor networks,” IEEE Signal
Processing Magazine, vol. 22, no. 4, pp. 54-69, July
2005.

[2] R. L. Moses, D. Krishnamurthy, and R. M. Patterson, “A
self-localization method for wireless sensor networks,”’
EURASIP Journal on Applied Signal Processing, vol.
2003, pp. 348-358, 2003.

[3] X. Sheng and Y. H. Hu, “Energy based acoustic source
localization,” in Information Processing in Sensor Net-
works, 2003, pp. 285-300.

[4] A.T. Ihler et al, “Nonparametric belief propagation for
self-localization of sensor networks,” IEEE Journal on
Selected Areas in Communications, vol. 23, no. 4, pp.
809-819, 2005.

[5S] M. Vemula, M. F. Bugallo, and P. M. Djuri¢, “Fusion
of information for sensor self-localization by a Monte
Carlo method,” in The 9th International Conference on
Information Fusion (FUSION-2006), July 2006.

[6] D.Fox,J. Hightower, H. Kauz, L. Liao, and D. Patterson,
“Bayesian techniques for location estimation,” in In Proc.
Workshop on Location-Aware Computing, UBICOMP
Conference, Oct. 2003.

[7] A. Savvides, L. Girod, M. B. Srivastava, and D. Estrin,
Localization in Sensor Networks, Wireless Sensor Net-
works. Kluwer, Norwell MA, 2004.

[8] W. 1. J. Rey, Introduction to Robust and Quasi—Robust
Statistical Methods, Springer—Verlag, 1983.

II- 836



