
FORMAT-INDEPENDENT AUTHENTICATION OF ARBITRARY SCALABLE

BIT-STREAMS USING ONE-WAY ACCUMULATORS

Debargha Mukherjee

Hewlett Packard Laboratories, Palo Alto, CA, USA

Email: debargha@hpl.hp.com

ABSTRACT

We propose a mechanism for authentication of general scalable

bit-streams, based on quasi-commutative one-way accumulator

functions. Such functions allow flexible partitioning between an

auxiliary hash computed for removed parts of an original bit-

stream and the hash that a receiver can compute from the

received bit-stream, and yet allow generation of a common root

hash for the original bit-stream against which the authentication

may be conducted. Unlike prior work using Merkle hash trees,

the number of auxiliary hashes to be transmitted is always one,

independent of the actual version of the bit-stream to be

authenticated, and the mechanism is independent of the order of

hash accumulation. Further, the method readily lends itself to

format-independent authentication and adaptation mechanism by

use of appropriate standardized metadata.

Index Terms — scalable bit-stream, authentication, one-

way accumulator, hash, commutative

1. INTRODUCTION

To improve multimedia content accessibility and to maximize

experience commensurate with diverse and dynamic terminal and

network capabilities and conditions, as well as individual

preferences, it is essential to adapt multimedia content in the

delivery path to end consumers. Scalable bit-streams [1][2] are

particularly advantageous in this regard, since they enable

adaptation by simple bit-stream removal operations, which

additionally can be conducted in the encrypted domain by

untrusted adaptation engines by use of progressive encryption

techniques [3][4]. Further, for sensitive material, a mechanism to

enable receivers to verify authenticity [5][6][7] of received

content irrespective of the mid-stream adaptations conducted

must be supported. Much of the prior work in this area has been

focused on JPEG2000 bit-streams [6][7] partly because of the

interest generated by standardization of JPSEC [8] or secure

JPEG2000. This paper focuses on such authentication within the

context of generalized scalable bit-streams, and proposes a new

method, that is considerably more generic and elegant, and

further eliminates variability in the amount of hash information

transmitted. Recently there has been a new line of research on

authentication in lossy packet networks. This paper does not

address this scenario specifically, but extensions are straight-

forward.

Another factor is that the set of rich media content formats to

be delivered is growing fast. This justifies a drive towards

delivery infrastructure components, such as adaptation,

encryption/decryption or authentication engines, or modules

thereof that use a universal processing model – which do not

need frequent upgrades to support new formats and can even

support proprietary ones. This is enabled by associating the

content with standardized metadata that is small enough to make

delivery alongside the content feasible, yet not detailed enough to

leak information about the content from a security stand-point. In

the spirit of our prior work on format independent adaptation

[9][10], encryption [4] and access control [11], we have paid

explicit attention to format-independence in our authentication

mechanism as well.

In Section 2 we present a general model for scalable bit-streams

and a general framework for authentication of such bit-streams.

In Section 3 we describe our proposed authentication mechanism,

and in Section 4, we show how the authentication operations may

be conducted in a fully format-independent manner based on

metadata associated with the content.

2. SCALABLE BIT-STREAM AUTHENTICATION

2.1. Modeling Scalability
A scalable bit-stream often scales along multiple dimensions

simultaneously. A universal model called the SSM model [9][10]

specifies how segments are removed from such a bit-stream to create

lower versions. According to a simplified version of this model, the

data in a scalable bit-stream is organized in sequential units called

adaptation units – representing GOP, Frames, Tiles, etc. – each of

which is a hypercube with a variable number of dimensions. If there

are L dimensions of scalability in each adaptation unit, and the ith

Actual bit-stream

Logical model

Adaptation Unit 0 Adaptation Unit 1

Fig. 1 Bit-stream example showing two adaptation units with

3x4 logical hypercubes in each. Light-shaded and cross-hatched

segments correspond respectively to update fields and segments

that are neither included in logical units nor are update fields.

II ­ 8291­4244­0728­1/07/$20.00 ©2007 IEEE ICASSP 2007

dimension of the kth adaptation unit contains li[k] layers, we say that

the data in the kth adaptation unit consists of l0[k] l1[k] … lL–1[k]

logical data segments B(i0, i1, …, iL–1)[k], ij=0,1,…, lj[k]–1, j=0,1,…,

L–1, called logical units that are arranged in a hypercube. Each logical

unit maps to any number of contiguous bit-stream segments located

arbitrarily in the actual bit-stream. Fig. 1 illustrates this concept. Note

that in addition to bit-stream segments that belong to an atom, there

may be segments that do not belong to any.

From this logical hypercube structure [10], we can consider

fully scalable bit-streams, where each dimension is incremental

type, meaning layers can be removed only from the outer ends of

each dimension to obtain scaled down adapted versions.

However, we can also consider other forms of scalability, where

one or more atoms are chosen arbitrarily from each dimension.

Some other examples of dimension types – exclusive, exhaustive,

range-type, etc. [10] – and the resulting scalabilities obtained by

combination are shown in Fig. 2 for a single adaptation unit.

Note that there may be certain update fields in the bit-stream –

such as length of a segment, or number of layers included, or

packet index etc. – which need to be updated when segments are

dropped in order to create a valid compliant bit-stream. These

update fields need special handling because they cannot be used

for either progressive encryption as observed in [4], or hash

generation for authentication. The bit-stream support segment

corresponding to a logical unit is thus the concatenation of all

contiguous segments belonging to the logical unit in the order

they appear in the bit-stream, minus any update fields.

2.2. Authentication strategies
For an arbitrary bit-stream, the conventional authentication

strategy is as follows: The owner of the content computes and

publishes/transmits a hash using a known hash function for a bit-

stream to be distributed. When a receiver receives the content, it

can compute the same hash for the received content, and verify

authenticity by comparing its computed hash with the published

hash. The security of the scheme is derived from the fact that it is

impossible for a malicious attacker under reasonable complexity

constraints to generate and substitute a fake bit-stream that would

yield the same published hash.

Unfortunately, when we have scalable bit-streams that can be

adapted mid-stream to handle network and terminal constraints,

the above model does not work, because a bit-stream from which

layers have been removed, surely would not yield the same hash

as the published one. The simplest strategy then is to compute a

hash for every possible adapted version of the content and

publish/transmit it. The drawback is that for scalable bit-streams

with a large number of possible adaptations, it can be messy and

expensive to handle and transmit all the possible hashes. A

slightly better strategy in cases where the number of possible

adaptations is larger than the number of logical units is to have a

hash transmitted for every possible logical unit. This is equivalent

to the strategy used in [6]. But ultimately, both of these strategies

are expensive in terms of bandwidth.

In order to alleviate these problems, Peng et al [7] proposed a

scheme based on one-way hash functions and Merkle hash trees

employed to generate a root hash in a hierarchical fashion. In this

model, transmitted alongside the root hash of the content, is some

auxiliary information specific for that version of the content. The

auxiliary information essentially represents the contribution of the

bitstream segments removed to the root hash. The receiver

computes the root hash by combining the hash for the content

received with the auxiliary hashes transmitted to obtain the root

hash. For the case of a fully scalable bit-stream, the algorithm

operates somewhat as shown in Fig. 3 for an exemplary 4×3

logical hypercube bit-stream. Assume Z(i, j) refers to a hash

(MD-5, SHA-X etc.) computed from the bit-stream for the bit-

stream support segment for logical unit B(i, j). Here h:Z×Z Z is

any one-way hash function. For the specific case as presented in

[7], this function is a concatenation of two child hashes followed

by a hash computation (MD-5, SHA-X, etc.) on the

concatenation. The figure shows how the root hash R is obtained

by combining the individual logical unit hashes in a hierarchical

fashion. Specifically, first a one way function chain is run for

each row backwards, followed by running another function chain

vertically backwards to combine the row hashes. If we assume

that an adaptation preserves only a 2×2 logical unit, then the

logical unit hashes Z(0,0), Z(0,1), Z(1,0), and Z(1,1) would be

available from the bit-stream. However, in order to enable

verification of the root hash R, the partial hashes R(2,0), R(2,1)

and R(0,2) must be transmitted as auxiliary information.

Extension to multiple dimensions is obvious.

Some points to note form the above mechanism are as follows:

First, the amount of auxiliary information is variable and depends

on the actual version transmitted. Second, while the amount of

information to be transmitted is usually manageable for the fully

scalable case, the situation is not too favorable if the bit-stream

Dim 1 (Incremental)

(a) Full scalability

Dim 0 (Incremental)

(c) Multiple versions

Dim 0 (Exclusive) Dim 0 (Exclusive)

(b) Hybrid scalability

Dim 0 (Range-type)

(f) ROI scalability (d) MDC scalability

Dim 0 (Exhaustive)

Dim 1 (Incremental) Dim 1 (Exclusive) Dim 1 (Incremental) Dim 1 (Incremental)

Fig. 2 Various types of dimensions of the logical hypercube model and scalabilities derived from their combinations

II ­ 830

supports other scalability types, such as exclusive or range-type.

For example, if we consider cropping adaptation of a JPEG2000

bit-stream, where the number of tiles to be removed from all four

sides are not known a priori, obtaining a hash tree structure that

would result in compact auxiliary information would be quite

challenging. Third, the order of computation of the hashes must

be conveyed to the receiver in order to enable it to verify

authenticity, or a convention for this must be additionally

standardized. Further, it must also be conveyed unambiguously to

a mid-stream adaptation engine in order to enable it to compute

the auxiliary hashes.

In the next section we propose an alternative method where the

above problems are alleviated.

3. AUTHENTICATION USING ONE-WAY

ACCUMULATORS

Consider a bit-stream with N logical units. Our objective is to

obtain a method where any arbitrary partitioning of these N units

into M included logical units and N – M excluded logical units,

can be authenticated against a root hash, using a single auxiliary

hash (see Fig. 4). In order to achieve this objective, we introduce

a cryptographic primitive called the one-way accumulator

function [13]. A one-way accumulator function h:Y×Z Y is not

only one-way: i.e. it is hard to obtain y given h(y, z) and z, but it

also has satisfies a quasi-commutative property: h(h(y,z1),z2) =

h(h(y,z2),z1). In other words, h(h(…h(h(y,z1),z2),…), zn-2), zn-1) is

independent of the order the zi’s. An example of such a function

is the RSA accumulator A(y, z) = y
z
 mod n, where n is a very

large rigid integer, i.e. a product of safe primes. Under these

conditions, y cannot be obtained from A(y, z), z and n, in

polynomial time.

In our method, we obtain an aggregated hash from the

individual logical unit hashes, using such a one-way accumulator

function. This aggregated hash becomes the root hash. In

particular, the following steps are conducted by the content-

owner to obtain a root hash R.

1. Choose n, a large rigid integer (product of safe primes).

2. For each logical unit, compute a cryptographic hash by a

known method (MD-5, SHA-X, etc.) with the number of

bits roughly the same order as n. Denote this hash of logical

unit B(j0, j1, …, jL-1)[k] as Z(j0, j1, …, jL-1)[k].

3. Choose an arbitrary large integer R0. Initialize R=R0.

4. Recursively compute: R = A(R, Z(j0, j1, …, jL-1)[k]), for all

atoms (j0, j1, …, jL-1)[k]. That is, for each logical unit B(j0, j1,

…, jL-1)[k], raise R to the hash of the logical unit - Z(j0, j1, …,

jL-1)[k] to obtain the updated R. This is equivalent to

computing the aggregated hash R of all the logical units

starting from R0, and its value is the same irrespective of the

order of computation of the hashes.

The final result R is the published root hash, along with the

integer n.

For each version, which has fewer than the original number of

logical units, the auxiliary information R* is computed as

follows:

1. For each logical unit not included in the version, compute

the cryptographic hash by the same method (MD-5, SHA-X,

etc.) as used for the root hash. Denote this hash of logical

unit B(j0, j1, …, jL-1)[k] as Z(j0, j1, …, jL-1)[k].

2. Initialize R*=R0.

3. Recursively compute: R* = A(R*, Z(j0, j1, …, jL-1)[k])), for

all atoms B(j0, j1, …, jL-1)[k] that are not included in the

version.

The final value of R* is the auxiliary information corresponding

to the given version. This is communicated to the recipient of a

given version of the content along with R and n.

When a receiver receives a version of the content, along with R,

n, and R*, it performs the following steps to verify authenticity:

1. For each logical unit received, compute the cryptographic

hash by the same method (MD-5, SHA-X, etc.) as used by

the content owner. Denote this hash of logical unit B(j0, j1,

…, jL-1)[k] as Z(j0, j1, …, jL-1)[k].

2. Initialize S=R*.

3. Recursively compute: S = A(S, Z(j0, j1, …, jL-1)[k]), for all

logical units (j0, j1, …, jL-1)[k] received.

4. Test: If S=R, the authentication succeeds, otherwise fails.

Thus, every version of the content is associated with a triple {R,

n, R*}. For the full version of the content, R*=R0. But then as

more and more of logical units are deleted from the bit-stream in

course of adaptations conducted over possibly multiple steps, R*

is updated each time with the hashes of the logical units deleted.

The authentication test would still pass because of the quasi-

commutative property. Fig. 4 illustrates the concept pictorially.

4. FORMAT-INDEPENDENCE

In this section we show that all functions involved in

authentication can be readily supported by format-independent

engines. In our previous work [9][10] we have shown that a

Z(0,0) Z(1,0) Z(2,0) Z(3,0)

hhhh

Z(0,1) Z(1,1) Z(2,1) Z(3,1)

hhhh

Z(0,2) Z(1,2) Z(2,2) Z(3,2)

hhh

R(0,2) R(1,2) R(2,2)

R(0,1) R(1,1) R(2,1)

R(0,0) R(1,0) R(2,0)

R

Fig. 3 Root hash generation for fully scalable bit-stream using

Merkle hash trees.

R R*

Set of hashes for N logical

units in the full bit-stream

Set of hashes for N–M

logical units removed

Root hash does
not change

irrespective of
the specific

subset of
logical units

removed

Auxiliary hash

N Logical unit hashes

Fig. 4 Flexible partitioning of logical unit hashes

II ­ 831

scalable bit-stream can be associated with metadata for

adaptation purposes that provides information about the number

and types of scalability dimensions, number of layers, and where

they lie in the bit-stream. It also provides information on the

update fields in the bit-stream, so that they can be removed for

hashing purposes. As an example, the (generic) Bit-stream

Syntax Description supported in MPEG-21 DIA [12] in

conjunction with additional standardization of the bit-stream

model, suffices for this purpose. Because the original scalable bit-

stream and the associated metadata containing the above

information is all that is required to know the number of logical

units and their bit-stream support segments (the same mechanism

was in fact used in our format-independent encryption work [4]),

their hashes can be generated unambiguously and then

aggregated to obtain the root hash. In other words, the root hash

computation can be performed by a format-independent root hash

generator engine as shown in Fig. 5(a). The aggregated hash R,

the initial auxiliary hash R*=R0, and the integer n may be

transmitted alongside the bit-stream using additional metadata.

An adaptation engine can next be used to adapt the scalable bi-

stream prior to delivery or mid-stream during delivery. It has been

shown that this adaptation operation can be conducted in a fully

format-independent manner based on the associated metadata

and additional metadata representing terminal and network

constraints. The adaptation engine includes a decision taking

engine that yields decisions regarding which logical units are to

be deleted. Based on these decisions and associated metadata, a

format-independent auxiliary hash update engine can compute

the hashes of the logical units that are removed, and then update

the auxiliary hash R* accordingly. The model is shown in Fig.

5(b). Such adaptations may be conducted in multiple steps.

Finally, at the receiver end, a format-independent verification

engine (see Fig. 5(c)) may be used to verify authenticity, based on

logical unit hashes computed using the metadata received.

5. REFERENCES

[1] D. S. Taubman, M. W. Marcellin, “JPEG2000: Image

Compression Fundamentals, Standards and Practice,”

Kluwer, Acad. Pubs, 2002.

[2] R. Schaefer, H. Schwartz, D. Marpe, T. Schierl, T.

Wiegand, “MCTF and scalability extension of H.264/AVC

and its application to video transmission, storage, and

surveillance,” Proc. SPIE, Visual Communications and

Image Processing, vol. 5960, pp. 243-54, July 2005.

[3] S. J. Wee, J. G. Apostolopoulos, "Secure scalable streaming

enabling transcoding without decryption," Proc. IEEE Int.

Conf. Image Processing, vol. 1, pp. 437–440, Oct. 2001.

[4] D. Mukherjee, H. Wang, A. Said, S. Liu, “Format

independent encryption of generalized scalable bit-streams

enabling arbitrary secure adaptations,” Proc. IEEE Int.

Conf. Ac., Speech and Sig. Proc., Philadelphia, March

2005.

[5] B. B. Zhu, M. D. Swanson, S. Li, “Encryption and

Authentication for scalable multimedia: Current state of the

art and challenges,” Proc. SPIE, 2004.

[6] R. Grosbois, P. Gerbelot and T. Ebrahimi, “Authentication

and Access Control in the JPEG 2000 Compressed

Domain”, Proc. SPIE, Applications of Digital Image

Processing XXIV, vol. 4472, pp. 95-104, 2001.

[7] C. Peng, R. H. Deng, Y. Wu, W. Shao, “A flexible and

scalable authentication scheme for JPEG2000 image

codestreams,” Proc. ACM Int. Conference on Multimedia,

pp. 433-41, Nov. 2003.

[8] F. Dufaux, S. Wee, J. Apostolopoulos, T. Ebrahimi,

“JPSEC for secure imaging in JPEG2000,” Proc. SPIE,

Applications of Digital Image Processing XXVII, vol. 5558,

Aug 2004.

[9] D. Mukherjee and A. Said, "Structured Scalable Meta-

formats (SSM) for Digital Item Adaptation," Proc. SPIE,

Internet Imaging IV, vol. 5018, pp. 148-67, Jan 2003.

[10] D. Mukherjee, A. Said, S. Liu, “A framework for fully

format-independent adaptation of scalable bit-streams,”

IEEE Trans. Circuits and Systems for Video Technology,

Oct 2005.

[11] D. Mukherjee, M. van der Schaar, “Compact dependent key

generation methods for encryption based subscription

differentiation for scalable bit-streams,” Proc. IEEE Int.

Conf. Image Processing, Genova, Italy, Oct 2005.

[12] “ISO/IEC 21000-7 FDIS Part 7: Digital Item Adaptation,”

ISO/IEC JTC 1/SC 29/WG 11/N6168, Dec 2003, Hawaii,

USA.

[13] J. Benaloh, M. de Mare, “One-way accumulators: A

decentralized alternative to digital signatures,” Advances in

Cryptology, Proc. EuroCrypt ’93. Lofthus, Norway. May

1993, ed. by T. Heleseth. Lecture Notes in Computer

Science, ed. by G. Goos and J. Hartmanis. vol. 765, pp.

274-285. Springer-Verlag. New York. 1994.

n

Format-Independent

Hash Generator

Engine Bit-stream

Metadata

R

n

R*=R0

Format-Independent

Adaptation

Engine

Metadata (updated)

R*

Format-Independent

Auxilliary Info

Update Engine

Bit-stream

Bit-stream (updated)

Metadata

R* (updated)

Adaptation

constraints

Adaptation

decisions

Bit-stream

R*

Format-Independent

Verification

Engine
Binary

verification flag

Metadata

R n

(a)

(c)

(b)

Fig. 5 Format Independent Authentication Components, all driven by metadata

II ­ 832

