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ABSTRACT

This paper uses higher order statistical moments to improve the de-
tection in systems which transmit side information through the print
and scan channel, such as 2-D bar codes and text luminance wa-
termarking. When these systems print symbols using halftoning,
symbol detection can be performed by evaluating second, third, and
fourth order statistical moments of the transmitted symbol, in addi-
tion to the average luminance level. A print and scan channel model
is described. The relationship between the modulated luminance and
the higher order moments of a halftone image is analyzed. The de-
tection error rate is reduced by merging the different moments into a
single metric. Experiments validate the analyses and the applicabi-
lity of the method.

Index Terms— Higher order statistics, 2-D bar codes, hardcopy
watermarking, print-scan.

1. INTRODUCTION

Despite of the advances on video, telephony and Internet based com-
munications, communication over paper is still an essential mean of
conveying information. In addition to regular text and images, pa-
per communications include, for example, bar codes and data hiding
techniques, i.e., hardcopy watermarking.

Regarding bar codes, multi-level two-dimensional (2-D) bar co-
des [1, 2] have gained increased attention in the past few years. Ins-
tead of representing information with only black and white symbols,
multi-level codes use gray levels to increase the bit rate, as illustrated
in Fig. 1(a), acting as a higher capacity version of 1-D bar codes.

(a) Multi-level 2-D bar code.
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(b) Example of text watermarking through luminance modulation.

Fig. 1: Illustration of side communications over paper.

In the context of hardcopy watermarking, an important class of
algorithms is that of luminance alteration of text (LAT) [3, 4, 5],
which slightly modi es the luminance of text characters to embed
information. This modi cation, which depends on the message to be
inserted, can be set perceptually transparent and can still be detected
after scanning. An example of this technique is given in Fig. 1(b),
where the characters are visibly modi ed to illustrate the process.
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The systems described above print symbols with different lumi-
nances, depending on the message to be transmitted. They usually
perform the detection using the average amplitude [1, 5] or spec-
tral characteristics [4] of the region of interest as a detection metric.
However, because halftoning is usually employed in the printing pro-
cess, other statistics of the received signal can also be used. In this
scenario, the contributions presented in this work are listed as fol-
lows. (i) The use of higher order statistical moments, such as va-
riance, skewness and kurtosis in the detection process is proposed.
(ii) To justify the use of these new metrics, a print and scan (PS)
channel model is described, which includes characteristics of the
halftoning process. (iii) The relationship between the average lumi-
nance and the higher order statistics of a halftone region is analyzed,
both before and after the PS process. (iv) To provide more robust-
ness to the PS distortions, combining the different metrics into a sin-
gle metric is proposed, decreasing the detection error probabilities
and allowing that previously proposed metrics [4, 5] be combined
with the ones proposed in this paper. To combine the metrics, the
Bayes classi er is adopted in this work. (v) Experiments validate
the analyses and the proposed modi cations.

This paper is organized as follows. Section 2 brie y discusses
halftoning algorithms and describes a PS model. Section 3 analyzes
the relationship between the different moments and the average lu-
minance before PS, whereas Section 4 performs a similar analysis
considering the PS distortions. Experimental results are presented in
Section 5, followed by conclusions in Section 6.

2. THE PRINT AND SCAN CHANNEL

This section describes the halftoning process, which takes place prior
the printing. This description is focused on ordered dithering halfto-
ning. Although spectral characteristics depend on the halftone used
[6], characteristics of the higher order moments are similar for diffe-
rent types of halftoning algorithms.

Let s be a digital image of size M × N with L + 1 levels in
the range [0,1], where 0 represents white and 1 represents black. A
halftoned image (binary) b is generated from s, using the ordered
dithering halftoning algorithm. The output of this method depends
on the size and on the coef cients of the dithering matrix D of size
J×J , where each coef cient represents a threshold level. The coef-
cient values in D are approximately uniformly distributed [6]. Each

coef cient takes a value from the set {0, 1/L, 2/L, . . . , 1}. The bi-
nary output image b is given by an element-by-element thresholding
operation between the pixels s(m,n) and the coef cients D(m,n).
In general, J � M and J � N . The input-output relationship of
ordered dithering can be mathematically described by:

b(m,n) =

(
0 if s(m,n) ≥ D(m modJ, n modJ)
1 otherwise

(1)
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where the output ‘0’ represents a white pixel (do not print a dot), and
‘1’ represents a black pixel (print a dot).

Analytical models of the PS channel have been presented in the
literature [1, 2]. In addition to the geometric distortions (possible
rotation, re-scaling, and cropping), those PS models assume that the
process can be modeled by low-pass ltering, the addition of Gaus-
sian noise, and non-linear gains, such as brightness and gamma al-
teration. In the following a modi ed PS channel model is described,
which in contrast to other existing models, includes the halftone sig-
nal to justify the use of higher order moments to decode information.

The digital scanned image y is represented by

y(m,n) = gs

j˘
gpr[b(m,n)] + η1(m,n)

¯
∗

∗ h(m,n)

ff
+ η3(m,n),

(2)

where b is the halftoned image generated from the original image s,
as described in (1). η1 represents printing noise due to microscopic
ink and paper imperfections. The noise η3 combines illumination
and CCD electronic noise [1], as well as the quantization noise due
to A/D. The operator ∗ represents convolution and the linear system
h is a low-pass lter combining the point-spread functions of the
printer and of the scanner. In the printing process, blurring occurs
due to toner or ink spread [7]. In the scanning process, the low-
pass effect is due to the optics and the motion blur caused by the
interactions between adjacent CCD arrays elements [1].

The term gpr(·) in (2) represents a gain in the printing pro-
cess. In practice, when toner or black ink particles are applied over
the paper, they do not present a null re ectance, causing a lumi-
nance gain to the printed image. This distortion is described by
gpr(m,n) = α(m,n)b(m,n), where α is a gain affecting the black
elements of b. α(m,n) is modeled as constant for a small region (an
area corresponding to one 2-D bar code symbol, for example), but
it does vary throughout a full page due to non-constant printer toner
distribution.

The term gs(·) represents the response of scanners, which vary
depending on the device. They may cause a non-linear gain to the
scanned image, represented by gs(m,n) = [x(m,n)]φ as reported
in results presented in [1].

3. EFFECTS INDUCED BY THE HALFTONE

The quantization due to halftoning affects the variance, the skew-
ness, and the kurtosis of a halftoned region, according to the input
luminance. This characteristic is demonstrated in the following.

The variance of a halftone block b0 of size J × J is given by:

σ2
b0 =

1

J2

JX
m=1

JX
n=1

[b0(m,n)− b̄0]
2 (3)

=
1

J2

JX
m=1

JX
n=1

b0(m,n)2 − 2b0(m,n)b̄0 + b̄0
2
, (4)

where b0(m,n) ∈ {0, 1}, b̄0 = (1/J2)
PJ

m=1

PJ
n=1 b0(m,n)

and J2 is the number of coef cients in the dithering matrix. Since
b0(m,n) ∈ {0, 1}, b20(m,n) = b0(m,n), and (4) can be written as

σ2
b0 = b̄0 − 2b̄0b̄0 + b̄0

2
= b̄0 − b̄0

2
. (5)

Similar analyses are performed for the skewness and for the kurtosis.

area p = s0
1

1s00

pD pb0 pη2

0 1 1− s0

1− s01− s0 s0s0

−s0

Fig. 2: From left to right: distribution assumed for the coef cients
in D; distribution of b0; distribution of η2.

The skewness measures the degree of asymmetry of a distribu-
tion around its mean. It is zero when the distribution is symmetric,
positive if the distribution shape is more spread to the right and ne-
gative if it is more spread to the left [8]. The skewness of a halftone
block b0 of size J × J is given by:

γ1b0 =

1

J2

JX
m=1

JX
n=1

[b0(m,n)− b̄0]
3

σ3
b0

=
b̄0 − 3b̄0

2
+ 2b̄0

3“
b̄0 − b̄0

2
”3/2 (6)

The kurtosis measures the relative atness or peakedness of a
distribution about its mean, with respect to a normal distribution [8].
The kurtosis of a halftone block b of size J × J is given by:

γ2b0 =

1

J2

JX
m=1

JX
n=1

[b0(m,n)− b̄0]
4

σ4
b0

− 3

=
b̄0 − 4b̄0

2
+ 6b̄0

3
− 3b̄0

4“
b̄0 − b̄0

2
”2 − 3 (7)

To derive σ2
b0

, γ1b0 and γ2b0 as a function of the input lumi-
nance s(m,n), b0(m,n) must be generated from a constant gray
level region, that is, s(m,n) = s0, m,n = 1, . . . J , where s0 is
a constant. Assuming that D is approximately uniformly distributed
as illustrated by pD in Fig. 2, the probability p of b0(m,n) = 1,
which is Pr[s0 > D(m,n)], is given by

p = Pr[s0 > D(m,n)] =
1

J2

X
b0(m,n)=1

b0(m,n) = b̄0 = s0 (8)

illustrated by the area p in pD in Fig. 2. Substituting this result into

(5), (6) and (7), yields σ2
b0

= s0 − s20, γ1b0 =
s0−3s2

0
+2s3

0

(s0−s2
0)

3/2 and

γ2b0 =
s0−4s2

0
+6s3

0
−3s4

0

(s0−s2
0)

2 , which represent respectively the variance,

the skewness, and the kurtosis of a halftoned block that represents a
region of constant luminance s0.

Because σ2
b0

, γ1b0 and γ2b0 depend on s0, these moments can
be used as detection metrics in text watermarking and multi-level bar
codes. The variance, for example, is maximum in the middle of the
input range (s0 = 0.5), where the black and white areas are appro-
ximately equal. Regarding the skewness, it is equal to zero when
s0 = 0.5 and the distribution of b0 is symmetric, represented by two
peaks of equal probabilities. The symmetric peaks also atten the
distribution of b0, minimizing the kurtosis. When s0 < 0.5, b0 is
composed of more white dots than black dots, leaning the distribu-
tion of b0 to the left and causing a positive skewness. The opposite
occurs when s0 > 0.5, causing a negative skewness. These effects
are illustrated in the experiments section.
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4. EFFECTS INDUCED BY THE PS CHANNEL

The metrics described in (5), (6) and (7) are distorted by the low-pass
characteristic and the additive noise of the PS channel. Considering
these distortions, σ2

y , γ1y and γ2y (statistical moments after PS) are
derived in the following. For simplicity, the (m,n) coordinate sys-
tem is mapped to an one dimensional notation.

In the model in (2), it is possible to decompose b into a cons-
tant term b̄ added to a noise term η2, such that b(n) = b̄ + η2(n).
The noise η2 is zero-mean with variance given by σ2

η2 = σ2
b , and

distribution η2 ∈ {−s0, 1− s0}, as illustrated by pη2 in Fig. 2.
Approximating φ to 1 in the gain gs in (2) and assuming that b is

generated from a constant gray level region, that is, s(n) = s0 = b̄,
(2) can be written as

y(n) =
˘
α[s0 + η2(n)] + η1(n)

¯
∗ h(n) + η3(n), (9)

The term α represents a gain (see gpr in (2)) that varies slightly
throughout a full page due to non-uniform printer toner distribution.
Due to its slow rate of change, α is modeled as constant in n but it
varies with each realization i satisfying α ∼ N (μα, σ2

α), where i
represents the i−th symbol of a 2-D bar code, for example.

Due to the nature of the noise (discussed in Section 2) and based
on experimental observations, η1 and η3 can be generally modeled
as zero-mean mutually independent Gaussian noise [1, 2].

The sample variance of a scanned symbol y of size N is given
by

σ2
y =

1

N

NX
n=1

[y(n)− ȳ]2 (10)

Considering the statistical characteristics assumed for the noise terms
in (9), a statistical analysis shows that the result of the expected value
of (10) as a function of s0 can be approximated to

μσ2y
= (μ2

α + σ2
α)σ

2
η2rh(0) + σ2

η1rh(0) + σ2
η3 (11)

where σ2
η2 = s0 − s20 and rh(l) represents the autocorrelation func-

tion of the impulse response of h. Similar analyses are performed
for the skewness γ1y and for the kurtosis γ2y , which yield:

μγ1y =
(3σ2

αμα + μ3
α)[(1− s0)(−s0)

3 + (1− s0)
3s0]r

2
h(0)

(μσ2y
)3/2

(12)

μγ2y =
1

(μσ2y
)2

„
(3σ4

α + 6σ2
αμ2

α + μ4
α)[(1− s0)(−s0)

4

+ (1− s0)
4s0]r

2
h(0) + 6(σ2

α + μ2
α)σ

2
η1σ

2
η2r

2
h(0)

+ 6(σ2
α + μ2

α)σ
2
η2σ

2
η3rh(0) + 3σ4

η1r
2
h(0)

+ 6σ2
η1σ

2
η3rh(0) + 3σ4

η3

«
− 3

(13)

To reduce the detection error rate, it is possible to combine the
average, variance, skewness and kurtosis of a received symbol into
a single metric. In this work, the Bayes classi er [9] is employed
to combine the metrics, although other classi ers can be used [9].
Although some detection metrics have better performance than others,
because all the rst four statistical moments are useful to separate
classes, combining them increases the distance between classes, and
consequently reduces the detection error rate [9], at the expense of
increasing computational complexity. It is also possible to combine
useful spectral or other non-statistical metrics, although this is not
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(a) Variance σ2b dependent on s0.
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(b) Skewness γ1b dependent on s0.
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(c) Kurtosis γ2b dependent on s0.

Fig. 3: Halftone statistics dependent on the luminance s0, before PS.

discussed in this paper.

5. EXPERIMENTS

The experiments were conducted with printers HP IJ-855C, HP IJ-
870Cxi and HP LJ-1100, and scanners Genius HR6X, HP 2300C
and HP SJ-5P. The printing and scanning resolutions were set to 300
dots/inch and pixels/inch, respectively.

In the rst experiment, the effect of a symbol variance level that
depends on the input modulated luminance is illustrated in Fig. 3(a),
where two curves are presented. The black curve (‘Theoretical’) re-
presents the theoretical variance determined in (5). The gray curve
(‘Bayer’) represents the variance of a halftoned block (before PS) ge-
nerated using the Bayer dithering matrix [10]. Similar experiments
are presented regarding the skewness and the kurtosis, as shown in
Figs. 3(b) and 3(c). These gures illustrate that the analyses of Sec-
tion 3 are in accordance with the results obtained from a practical
halftoning matrix.

The second experiment illustrates the validity of the channel mo-
del described in Section 2 and the expected values of the higher order
moments as a function of the input modulated luminance, determi-
ned analytically in Section 4. The effect of a printed and scanned
variance level that depends on the input luminance is illustrated in
Fig. 4(a), where two curves are presented. The black curve (’Theo-
retical’) represents the theoretical variance determined in (11). The
gray curve (’Experimental’) represents the variance of actual printed
and scanned blocks. Similar experiments are presented regarding the
skewness and the kurtosis determined in (12) and (13), as shown in
Figures 4(b) and 4(c), respectively.

In the third experiment a multi-level 2-D bar code is printed with
a sequence of 56000 symbols with four possible luminance levels (2
bits/symbol) drawn from the alphabet {0.08, 0.34, 0.65, 0.95}. Op-
timum values for the alphabet depend on the PS devices used, as
discussed in [1]. The size of each symbol is 8× 8 pixels, correspon-
ding to the size of one halftone block. Table 1 shows the obtained
bit error rates when performing the detection using two suggested
metrics (average and skewness) separately. This table also presents
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(b) Skewness γ1y dependent on s0.
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(c) Kurtosis γ2y dependent on s0.

Fig. 4: Higher order statistics dependent on the luminance, after PS.

Table 1: Experimental error rates for 2-D bar codes.
Metric Number of Errors Error Rate

Average (μ) 667 1.19× 10−2

Kurtosis (γ2) 1860 3.32× 10−2

Comb. (μ, σ2) 114 2.04× 10−3

Comb. (μ, γ1) 259 4.63× 10−3

Comb. (μ, σ2, γ1) 50 8.93× 10−4

Comb. (μ, σ2, γ1, γ2) 22 3.93× 10−4

the results of combining the metrics with the Bayes classi er, illus-
trating a smaller error rate. The variance and the kurtosis cannot
be used alone because they are symmetric around the middle of the
luminance range.

The fourth experiment implemented the text hardcopy water-
marking system [4, 5], which embeds data by performing modi ca-
tions in the luminances of characters, respecting a perceptual trans-
parency requirement. A sequence of 15180 characters (as in ‘abc-
def...’ ) is printed and scanned. The font type tested was ‘Arial’,
size 12. The luminances of the characters were randomly modi ed
to {0.95, 0.84}with equal probability, where 0.95 corresponds to bit
0 and 0.84 corresponds to bit 1. To determine to which class (bit 0 or
bit 1) each received character belongs to, the four metrics were used.
The resulting obtained error rates are given in Table 2. Illustrations

Table 2: Experimental error rates for text watermarking.
Metric Number of Errors Error Rate

Average (μ) 157 1.03× 10−2

Variance (σ2) 144 9.48× 10−3

Skewness (γ1) 280 1.84× 10−2

Kurtosis (γ2) 328 2.16× 10−2

Comb. (μ, σ2) 14 9.22× 10−4

Comb. (μ, γ1) 27 1.78× 10−3

Comb. (μ, σ2, γ1) 8 5.27× 10−4

Comb. (μ, σ2, γ1, γ2) 3 1.98× 10−4
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Fig. 5: Illustration of the use of the Bayes classi er.

of employing the Bayes classi er to combine metrics are given in
Fig. 5(a) (μ, σ2) and in Fig. 5(b) (μ, σ2, γ1).

6. CONCLUSIONS

This paper reduces the detection error rate of printed symbols in ap-
plications where the luminances of the symbols depend on a message
to be transmitted through the PS channel. As a consequence of mo-
difying the luminances, the halftoning in the printing process also
modi es the higher order statistical moments of a symbol, such as
the variance, the skewness and the kurtosis. Therefore, in addition
to the average luminance, these moments are also used to detect a re-
ceived symbol without the need of performing any modi cations in
the transmitting function. A PS channel model is presented. Analy-
ses determining the relationship between the average luminance and
the higher order moments of a halftoned image and of a PS image
are presented, justifying the use of the new detection metrics. The
experiments have illustrated the applicability of the new metrics and
that a signi cant reduction of error rate is achieved when the metrics
are combined into a single decision metric.
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