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ABSTRACT 

In this paper, we propose an architecture that combines a 
quantization-based steganogrphic scheme with a 
steganalysis system, operated in a closed-loop manner with 
a cost function for minimization, to enhance the anti-
steganalysis capability and image quality after data 
embedding. In this architecture, a controller based on the 
SA (simulated annealing) technique is adopted to guarantee 
fast and accurate convergence. Our proposed system is 
applied to the data embedding of JPEG-compressed images. 
Compared with the original embedding algorithm in [5], a 
better image quality (by an average improvement of 6.48 dB) 
can be achieved and simultaneously the anti-steganalysis 
capability is enhanced significantly.  

Index Terms— Steganography, steganalysis, HVS 

1. INTRODUCTION 

For steganographic schemes, imperceptibility is clearly the 
most important requirement [1]. That is, the modifications 
between the cover media and its stego version should be 
slight and transparent to the human eyes. However, today, 
this slight modification might be discoverable by using an 
adequate mechanism with the aid of computer, e.g., 
steganalysis [2][3]. Most steganalytic schemes analyze 
statistical properties to distinguish stego media from the 
original ones. Due to the above reason, some few 
researchers [11][12] pay more attention to this additional 
requirement of statistical undetectability to develop a 
mechanism against steganalysis. This technique, still in its 
infant, was called “anti-steganalysis.”  

Wu et al. [11] proposed a scheme in which a genetic 
algorithm (GA) is used to iteratively modify pixel-domain 
graylevels and make the difference of statistical properties 
between the cover image and its stego version small. The 
process will terminate until the steganalytic scheme in the 
loop fails and the bit error rate (BER) after data extraction is 
minimized. However, their steganographic scheme can not 
guarantee a BER of zero and the anti-steganalysis is based 
on each 8 8 pixel block, but not a full frame, implying a 
possible failure for attacks that consider statistic features of 

more than one block. On the other hand, Lie et. al. [4] 
developed an embedding algorithm for JPEG images to 
optimize the modified picture quality at a given robustness. 
A criterion of minimizing least-square-errors was adopted to 
calculate the modified amount to each transform coefficient, 
while maintaining the BER to zero in case of no attacks 
(e.g., common image processing). However, their work did 
not consider the steganalysis attack. The above drawbacks 
motivate us to develop an embedding architecture to solve 
the problems of anti-steganalysis, optimized picture quality, 
and BER, simultaneously. 

Here in this paper, we propose an SA (Simulated 
Annealing)-based algorithm to augment a known [5] 
steganographic scheme for modifying transform coefficients 
so that some performance indices (e.g., MSE, HVS 
deviation, and differences of statistical features) are 
optimized subject to certain specified constraints (e.g., BER 
and anti-steganalysis).  

2. THE SYSTEM ARCHITECTURE 

Several factors are often considered in designing a 
stegnographic scheme [1]: (1) imperceptibility, (2) statistical 
undetectability (i.e., anti-steganalysis), (3) embedding 
capacity, and (4) bit error rate (BER) after data extraction. 
However, some of them might contradict to one another. 
For example, increasing the embedding capacity might 
decrease the imperceptibility and increase the statistical 
detectability. It is thus difficult to tradeoff them based on an 
open-loop architecture. Here, we propose a closed-loop 
architecture to achieve the above purposes simultaneously.  

Figure 1 shows the architecture of our proposed system. 
Essentially, four kinds of performances are evaluated and 
used to steer the modification of transform coefficients: 
MSE (mean square error) 1f , HVS deviation 2f , difference 
of statistical features (for steganalysis) 3f , and BER 4f . To 
successfully pass the steganalysis attack for the resulting 
images, a steganalytic subsystem [3] from our prior work, 
which analyzes the gradient energy (in the spatial domain) 
and the Laplacian parameter (in the DCT transform domain) 
as the statistical features, is placed in the evaluation loop. 
The index 3f  measures the sum of absolute differences of 
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these two statistical features between a host image and its 
stego version. Then we define a cost function E as follows. 

44332211 fwfwfwfwE         (1) 
where w1, w2, w3, and w4 are predefined weightings.  

It is expected that the statistical ranges of these four 
features are different. In order to balance the effect of each 
feature in the cost function, they should be normalized. The 
normalization is defined as follows. 

min,max,min, /ˆ
iiiii fffff                 (2) 

where if  and if̂  denote the original feature and its 
normalized value, respectively, i =1,2,3,4, min,if  and max,if
represent the minimum and maximum values of the i-th 
feature, respectively.  

To achieve convergence efficiently, optimization search 
is conducted by the SA (Simulated Annealing) mechanism 
[6], with good initial solutions estimated by some analytic 
techniques. 

Since most digital images are stored and transmitted in 
JPEG format, here we pay more attention to combining the 
DCT-domain embedding schemes in [5] with our closed-
loop architecture. Theoretically, this architecture can be 
extended to other steganographic schemes. 

Fig. 1  Proposed closed-loop architecture for SA-based data 
embedding with enhanced anti-steganalysis. 

3. THE  STEGANOGRAPHIC SCHEME 

First of all, an integer L should be determined before 
data embedding. Actually, L determines the embedding 
capacity of each embedding unit (EU), which is log2L bits. 
It is assumed that L is known to both the transmitter and the 
receiver.  

Suppose the secret message M consists of Nm elements 
and is represented as M = {mn | n=1,2,..., Nm }. Message 
element mn is hidden into the n-th EU and Lmn0 . The 
embedding process is repeated Nm times to hide M into the 
whole image. To deal with JPEG images, the quantization 
index (QI) of DCT coefficients is used for data hiding. To 
have a high embedding efficiency and less variation in the 
resulting JPEG file size, only non-zero QIs are chosen for 
modification. Then the embedding algorithm is described as 
follows [5]. 
H1. Get the DCT QIs of the given JPEG image after VLD 

(Variable Length Decoding) process. 
H2. Divide all DCT blocks into Nm EUs. Each EU contains 

several 8×8 DCT blocks. 
H3. Calculate the sum S of the DCT QI in the n-th EU as:  

EU),(
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0,mod rLSr                         (4) 
where }7,0),({ , lklkx jiji,X is the DCT block 
representation of the (i,j)-th block, (k, l) is the position 
index of QI in (the set of non-zero QIs), and mod 
represents the modulo operator. Obviously, we have 
the remainder 10 Lr .

H4. Compute the modification amount d for data 
embedding as  

rmd n1 , 12 dLd ,                  (5) 
and                            21 ,min ddd .                       (6)   

H5. Modify the DCT QI’s in the n-th EU such that the 
following rules are satisfied: 
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where S~  denotes the modified version of S.
H6. Repeat Steps H1-H5 for all EUs to create a stego 

image. 

To extract the hidden message data, the steps are:  
E1. Decode the received JPEG image to obtain the DCT 

QIs and divide all DCT blocks into Nm EUs. 
E2. Calculate Ŝ  for each EU according to Eq.(3). 

Compute LSr modˆˆ  (L is assumed known). Then r̂
represents the hidden message nm .

E3. Repeat Steps E1-E2 for all EUs to get all message 
data. 

A problem not mentioned is how to alter DCT QIs in 
Step (H5) such that dSS |~| is satisfied. Several solutions 
are possible. For example, d is evenly distributed between 
all non-zero QIs. However, it is our intent to advance this 
steganographic scheme by properly distributing d among 
non-zero coefficients so that the cost function E in Eq.(1) is 
optimized and the steganalytic system is broken after 
embedding. Expectedly, the computational complexity of 
finding solutions by using the exhaustive search is 
extremely high. Here, a more efficient manner based on the 
SA algorithm is adopted instead. The detailed SA algorithm 
will not be addressed here due to space limitation. Readers 
can refer to related textbook or articles [6]. In short, three 
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important elements should be contained in SA: initial 
solution, neighboring solutions, and cost function.  

4. SA-BASED OPTIMIZATION 

Clearly, the cost function defined in Eq.(1) fits this 
purpose. Note that due to the nature of the embedding 
algorithm we adopt, BER will be always zero without 
external processing attacks, such as filtering, compression, 
etc. This is different from the case of [11], where BER 
cannot be guaranteed even after GA optimization. Hence, 
we set w4=0 in current implementation.

As mentioned in [6], a good initial solution results in a 
faster convergence. Here, an analytic solution based on the 
minimization of MSE ( 1f ), subject to the HVS model ( 2f ),
is estimated and used as the initial search. 

First, }),(,0),(|),({ ),(),(),( jijiji lklklk denotes 
the vector of modifications on QIs for each EU, where ),( ji

is the set of nonzero DCT QIs in the (i,j)-th 8 8 block. 
Hence, we have [4]: 
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where )sgn(  is the sign function. To achieve 
imperceptibility, the Watson’s perceptual model [8][9] is 
used here. Thus, the problem, minimizing MSE subject to 
HVS model, can be expressed as  
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where lk ,  is the quantization step for the (k,l)-th 
coefficient, ),(),( lkM ji  is the mask value subject to HVS 
model [8][9]. Note that we have integrated the HVS 
constraints (i.e., ),(),( lkM ji ) for individual coefficients into 
only one, due to the requirement of problem simplification.  
The constrained optimization problem stated in Eq. (10) can 
be converted into an unconstrained optimization problem by 
using the Lagrangian multiplier method. Then, Eq.(10) can 
be expressed as 
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where 
oN  denotes the number of nonzero DCT QIs in this 

EU. Without loss of clarity, we simplify the indices of 
),(),( lkxh

ji , ),(),( lkxo
ji , and ),(),( lkM ji and change them  to be 

h
ix , o

ix , and iM , respectively. 

To obtain the optimal solution, we differentiate Eq.(11) 
with respect to  and , and set the result to zero, i.e., 

0/),(L  and 0/),(L . Then the optimal 
solution *~ can be calculated as follows: 

cA-1*~ ,                                      (12) 
where  
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Then the solution can be utilized as the initial solution 
of SA. On searching neighboring solutions for SA, 4 
variations of current solution, according to different 
strategies, are generated. As an example, if current solution 
is =[3,2, 2,1,0,0,0,0] (i.e., d=8), then we can have 
neighboring solutions as 1 =[2,2,2,1,1,0,0,0] (more even), 

2 =[4,2,2,0, 0,0,0,0] (more centralized), 3 =[2,2,2,2,0,0,0,0] 
(random), and 4 =[3,3,1,1,0,0,0,0] (random). Note that 
each neighboring solution should still satisfy the 
requirement of dSS |~| . With neighboring solutions of 
different strategies, it is more possible for SA to search out 
the optimal one. Neighboring solutions, after evaluation, are 
then compared with the current solution and update it if 
necessary.   

Note also that the steganalysis test can be done each 
time a current solution is updated or the search is converged, 
as illustrated in Fig.1. The requirement of anti-steganalysis 
will be released after a large times of iterations for each EU. 
This case often occurs at a large L, or a higher embedding 
capacity (see Table I). 

5. EXPERIMENTAL RESULTS 

Here 50 JPEG images, each of 512 512 pixels, were 
selected as subjects for data embedding. Let an EU is of 
64 64 pixels. Nm equals 64 for each cover image. 

We first analyze the impact of L on images’ visual 
quality by varying it from 1024 to 8192, i.e., a capacity of 
10 bits to 13 bits for each EU. The PSNRs measured 
between the input and the marked JPEG images are higher 
than 42.13 dB, 38.24dB, 31.94dB and 27dB when L is set to 
1024, 2048, 4096, and 8192, respectively. The results show 
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that the higher the embedding capacity (i.e., higher L), the 
lower the visual quality. 

Here we compare the PSNR, file size variance, and 
NQM (visual quality metric in [10]) of the proposed method 
with that in [5]. To be fair, the embedding rate is same to 
both. As shown in Table I, the proposed scheme improves 
the PSNRs by an average of 6.48 dB. As mentioned above, 
the JPEG file size would probably be modified. It is found 
that the variations of JPEG file sizes are on average 3.41% 
and 38.21% for our method and [5], respectively. Therefore, 
in terms of image quality and file size variation, our 
proposed scheme is superior to that method in [5], with the 
aid of SA-based optimization. Beside, NQMs of the 
proposed scheme are higher than those of [5] except the 
case of L=8192, which is beyond real application due to low 
image quality. 

Here we also evaluate the anti-steganalysis 
performance of the proposed scheme and [5]. The 
steganalytic scheme in [3] is used for evaluation. A measure, 
pass rate, is defined as the ratio of the number of stego 
images not detected by [3] to the number of total test images 
(i.e., 50). In this experiment, the embedding capacity of the 
stego images generated by two algorithms is kept the same 
for fair comparison. From Table I, it can be observed that 
our scheme has successfully enhanced the anti-steganalysis 
capability for the steganographic scheme proposed in [5], as 
the embedding capacity is higher, e.g., at L=2048. 

6. CONCLUSIONS 

Here, we have demonstrated the effectiveness of our 
proposed closed-loop system in improving image quality 
and enhancing the anti-steganalysis capability after data 
embedding. In principle, this closed-loop architecture can be 
applied to most types of steganographic schemes (in either 
spatial or transform domain) and steganalytic systems 
(either ours in [3] or others published elsewhere). Moreover, 
more constraints or performance index can be added into the 
cost function for optimization. Without loss of generality, 
this architecture is useful in enhancing steganographic 
schemes in terms of multi-functionalities such as embedding 
capacity, picture quality, HVS, anti-steganalysis, BER, or 
more.  
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