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ABSTRACT

We consider the problem of packet scheduling for the transmission
of multiple video streams over a wireless local area network
(WLAN). A cross-layer optimization framework is proposed to
minimize the wireless transceiver energy consumption while
reaching the user required visual quality. The framework relies on
the IEEE 802.11 standard and on a wavelet-based scalable video
coding scheme. It extends our previous work on energy-efficient
scheduling by introducing an application-level video quality metric
as QoS constraint (instead of a quality metric at the level of the
communication layers) and by reformulating the energy
minimization problem subject to the QoS constraint in order to
also consider the fairness among users. Simulation results
demonstrate significant additional energy gains by means of these
extensions.

Index Terms—QoS control and scheduling, Energy optimal
control, Scalable video coding, Multi-user WLAN, Cross-layer

1. INTRODUCTION

The demand for multimedia transmission over wireless networks is
continuously growing. Transmission of multiple video streams
over a wireless local area network (WLAN) is a typical example of
this evolution. In this context, Quality of Service (QoS) provision
for real-time applications is becoming more and more critical, as
wireless networks are affected by highly error-prone and time-
varying conditions, especially when a lot of users interact. Besides
this QoS challenge, ensuring low-power consumption is becoming
imperative in battery-operated portable devices.

Performing high-quality and energy-efficient video packet
selection and scheduling for such wireless networks is a
challenging task. Most of the WLAN transmission studies consider
throughput as performance measurement, while it can be shown
that throughput may not be the most appropriate metric for video
traffic. Some recent studies try to improve the performance by also
exploring the specificities of video traffic. For instance,
considering scalable video coding techniques [6,7] (which provide
an inherent prioritization among the compressed data and offer a
natural method for selecting different portions of the data stream
under different network conditions), different retransmission limits
were defined for different priority queues at the medium access
control (MAC) layer in [8]. In [10], a solution for scheduling
transmission opportunities (referred to as TXOP in the remainder
of the present paper) according to the data type is proposed.
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Considering energy efficiency, a substantial body of prior work
focuses on wireless transmission energy, and different approaches
exist at MAC and physical (PHY) layers [1, 2]. There is however
very few work considering the real video quality and the total
system energy cost, with a focus on the whole protocol stack.
Furthermore, few of the literature articles provide complexity
analysis when solving their formulated optimization problem. We
claim that by designing a two-phase cross-layer framework, a low
complexity run-time solution can be provided to optimize energy
consumption while meeting QoS and fairness requirements.

In [11, 12], we have introduced a cross-layer optimization
methodology (MEERA) enabling the energy-efficient and reliable
delivery of delay-sensitive network flows over a WLAN. In this
context, a two-phase systematic approach for optimally allocating
the network resources and controlling the system configuration
was proposed. A first contribution of the present paper is the
addition of a practical application-level video quality metric as
QoS constraint in the optimization system, instead of using a
packet loss probability at the communication layers. Doing so, a
true cross-layer quality and energy optimization method is
obtained. The resulting global solution enables to further minimize
the wireless transceiver energy consumption by a factor 2 with
respect to our prior work without degrading the visual quality.
Next, we reformulate the optimization problem as a min-max
problem in this paper, which enables to increase the energy cost
fairness among all users.

The remainder of this paper is organized as follows. Section II
briefly reviews the IEEE 802.11 WLAN standards and the
deployed 3D wavelet motion-compensated temporal filtering
(MCTF) scalable video coding scheme. Section III introduces the
proposed energy-efficient video scheduling strategy with rate-
distortion awareness. Appropriate system models are used to
instantiate the proposed cross-layer optimization framework given
the aforementioned standards. In Section V, we examine the
performance of our framework through simulations. Finally,
concluding remarks are provided in Section VI

2. WLAN VIDEO STREAMING SYSTEM OVERVIEW

The considered setup in the present work consists of the downlink
transmission of several pre-encoded video streams to different
mobile terminals in a WLAN. The content server is assumed to be
connected to the access point. In this section, we introduce the
wavelet-based scalable video coding scheme and the IEEE 802.11
standard that are considered for the test case. However, it is
important to emphasize that the cross-layer algorithms proposed in
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this paper can be deployed with any video coding scheme where
the bitstream can be organized into data units with scalability.
Additionally, any schedule-based protocol can be used. A system
model is introduced to calculate energy consumption, transmission
delay and the expected quality of the coded video after
transmission.

2.1. MAC and PHY channel model

The IEEE 802.11a PHY layer is based on Orthogonal Frequency
Division Multiplexing (OFDM), and provides eight different PHY
modes offering Data transmission Rates (DR), ranging from 6
Mbps to 54 Mbps. Our system modeling is based on an 802.11a

direct conversion transceiver implementation with turbo coding [3].

Four control parameters have significant impacts on energy and

performance for the OFDM transceivers: the modulation
order Nmod (number of bits per transmitted symbol), the code

rate B (amount of redundancy introduced in the signal), the
power amplifier (PA) transmit power P, and the back-off b

characterizing the linearity of the amplification [4]. Let us
represent a possible transmission configuration as a vector K (each
specific transmission parameter corresponds to an entry in this
vector). For reliably transmitting on a wireless network, a long
application layer packet p is usually further fragmented into
smaller data units. In this paper, we consider link layer
fragmentation only. The energy and time needed to send a Mac
Service Data Units (MSDU) is functions of this configuration
vector: £, (K) and TXOP,,, (K) [11, 12]. The energy

cost and time of transmitting an application layer packet is defined
as E (K)>TXOP,(K) > and these values depend on the

number of fragments that need to be transmitted or retransmitted
for successful packet transmission. To determine the channel
impact on the loss probability, the fading channel was discretized
into 8 classes, corresponding to a 2dB difference in received SNIR
(Signal-to-Noise-and- Interference-Ratio) for reaching a given
turbo code block error rate target. In order to derive a time-varying
link-layer error model, we associate every channel class to a
Markov state, each with a probability of occurrence based on the
channel fading statistics [4]. The loss probability of a MSDU

resulting from the model is denoted by P, (K ') . To obtain the

corresponding loss statistics at application layer, we compute the
Packet Error Rate (PER). The pE R"(K) of an application data

unit (assuming it is further fragmented into m MSDU packets and
y retransmissions are allowed) can be calculated according to Eq.

(H-06):
min(m,y)
P@f (K) = Z Cim (PMSDU )i(l - PMSDU )<’117i>P;—i(K) (1)

RS" (K) = (1 - PMSDU )m 2)
1- PER"(K)=Y P"(K) 3)
=0

Energy cost and time is linearly addable, hence

E ) (K) and7X0O P,, (K) are respectively given as:

E,(K)=(m+y)E, 5, (K) 4)
TXOP,(K) = (m+ y)TXOP,5,,,(K)  (5)

We refer the interested reader to [12] for more details of the
wireless channel model and the link layer scaling (adapting the
modulation order and code ration to spread the transmission over
time) and sleeping optimization (introducing as much as possible
transmission idle periods). In [12] it is shown how to obtain a
schedule to optimize the communication energy cost by leveraging
these scaling and sleeping techniques, while working in the
dimensions Energy, TXOP and PER. And the sleeping is achieved
by piggyback the wakeup time info onto contention free polls
defined in IEEE 802.11e protocol.

2.2. Architecture of the deployed scalable video coder

We consider a scalable video codec based on Motion Compensated
Temporal Filtering (MCTF). After the removal of the temporal
redundancies, the frames are decomposed spatially by performing
the Discrete Wavelet Transform (DWT). In a typical MCTF-based
video compression, the rate allocation of the scalable bitstream is
performed with a maximum granularity of one Group of Pictures
(GOP). This creates natural independent data units.

Taking only quality (SNR) scalability into account and
assuming a stable channel during one GOP time period, it is
possible to calculate the expected distortion contribution of each
quality layer on a GOP-per-GOP basis. The embedded bitstream of
3D MCTF wavelet coding has a sequential dependency, and each
layer can be decoded only under the condition that all the former
layers have been received, assuming there is no error concealment
used at the decoder side. Suppose each GOP is encoded into /
quality layers and the quality layers are the smallest application

data units. Let Di denote the distortion corresponding to the

reception of layers 1 to i, and DO denote the distortion associated
with losing the first layer. Denoting the error probability of layer i
under configuration K ; as PERK , the probability of correctly

receiving the quality layers wuntil layer i then writes

l—i[ (1- PER . ) Relying on the sequential dependency of the
i=1

e:nbedded sub-streams’ structure, the expected average distortion

De over one GOP can then be calculated as:

D, = PER, D, +if[(1 — PER )PERy, \D), +ﬁ(1 ~PER,)D,®)

i=1 j=1 i=1
Depending on the length of layer i, the associated energy cost
under configuration K is Ep’_ (K,), yielding the energy Egop,

transmission time 7XO Pop of the whole GOP as:

; !
Egop = Z Ep,(Ki) and TXOP;pp = z TXOPP,»(KI‘)

i=1 i=1

3. PROBLEM FORMUATION OF ENERGY
EFFICIENT MULTI-USER CROSS-LAYER
OPTIMIZATION
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Most of the former network allocation researches focused on
maximizing the throughput, the number of flow admitted and rate
etc. These solutions are not scalable to the rate-distortion
properties brought by video bitstreams, and therefore often lead to
inferior network efficiency and suboptimal resulting qualities for
the video users. From the former analysis, and under the
assumption that every video users can require their own end-to-end
quality, we reformulated the optimization problem with video
quality to be one of the constraints. For n users inside the network,
the optimization problem is formulated as a min-max problem to,

find for each of the user i, the configuration K ;such that:
K, =argmin(max £, (K,)),i =1,...,n

Subject to: De(i)SDr,i:I,..., n

> TXOP,,, <T™,
i=1

Where D" and T™ denotes the distortion and time constraint
respectively. Each wuser experiences different channel and
application dynamics, resulting in different system states over time.
It is this important characteristic which makes it possible to exploit
multi-user diversity for energy efficiency. To decrease the run time
complexity, we propose a two-phase solution approach. At design
time, for each possible system state, the optimal operating points
are determined according to their minimal energy cost and resource
(TXOP) consumption, for a given distortion constraint. To that end,
we introduce the Pareto concept for multi-objective optimization
from microeconomics [5]. Compared to a convex hull approach,
this Pareto Frontier enables more feasible settings at run-time.

a) Initialization: Allocate to each of the n user the smallest cost
possible for the given state, Eglg; . Construct an n-value

energy level vector, each of these values corresponding to one
of the users’ energy cost.

n
b) If Z T. XOEO >T™ | for the user which require the
i=1
smallest energy cost in this step, sorting out its Energy-TXOP
trade-off curve, until finding a setting which energy cost
exceeds the second small energy cost level or the resource
constraint is satisfied.
¢) While resource constraint not satisfied, update the energy
level vector and repeat b until resource constraint satisfied.
Table I Run-time greedy water-filling algorithm

After the system state of all the users is known at runtime, a
lightweight scheme is proposed relying on the Pareto property to
assign the best system configuration for each user. First, convert
the 3D Pareto frontier to a 2D Pareto curve by pruning those
settings that cannot satisfy the QoS constraint. The remaining
Energy-TXOP trade-offs are further explored to make a Pareto-
curve with energy cost in ascending order. A greedy water-filling
algorithm is proposed to solve the run-time searching for the best
bandwidth allocation. The implementation of the algorithm is
shown in Table I. The resulting outputs are the optimal settings
over all users. Assuming each of the n users maintains N Energy-

TXOP Pareto settings, the complexity of the water-filling

. . 2 . .
algorithm is O(nN~) . In our experiments, it turned out after

Pareto pruning, N is normally smaller than 10, which makes the
complexity of this step almost negligible.

4. NUMERICAL RESULTS

4.1. Simulation setup

In the experiments, a GOP size of 16 was used. Four sequences
(Bus, City, Foreman, Mother and daughter) are presented here as
examples of video with various motion activities (i.e., various rate-
distortion properties). All the sequences are at CIF (352x288, 4:2:0)
resolution and 30 frames per second. We encoded every sequence
around 36 dB for the full-length bitstream, and the number of
quality layers was set to 5. The intermediate bitstreams’ rates
(quality layers) are as follows: 256, 384, 448, 512, 1028 kbps for
bus sequence; 64, 128, 256, 384, 448 kbps for City sequence; 96,
112, 192, 288, 384 kbps for Foreman sequence; 64, 80, 96, 112,
128 kbps for Mother and Daughter sequence. These quality layers
also composed the truncation points of the bitstream at run time
transmission. Since network congestion’s influence is not the
exploration focus of current paper, we limit the number of users so
that every user’s requirement can be satisfied with the available
network bandwidth (notice congestion can be solved with the same
optimization by considering drop packets as one of the
transmission strategies that with energy cost and transmission time
equal to zero). MSDU size is set to 1500 Bytes. The maximal
MSDU retransmission time is limited to 10. The mobile devices
are uniformly distributed from the AP with the radius of 10m. And
the transceiver energy consumption unit is shown in Joule.

In order to evaluate the relative performance of the proposed
approach, we provide results for the three following transmission
strategies: (SoA reference point): The transceiver uses the highest
feasible modulation and code rate that will successfully deliver the
packets. After that, it switches to sleep. This approach is proposed
by commercial 802.11 interfaces [9], which aims to maximize the
sleep duration. (Constant PER, our previous work): in this
transmission strategy, we use our approach to transmit every video
packet with a configuration resulting in a PER smaller than 1e-2
(experiments results show that with the transmission PER smaller
than le-2, the video transmission can be regarded as error free). In
both the aforementioned strategies, we transmit the packet in each
users’ GOP until the transmitted bitstream reaches the quality
required by the user. Significant energy decrease can be observed
with respect to the SoA approach. (Expected PSNR, proposed
method): in this transmission strategy, we introduce the expected
visual distortion into the design time Pareto frontier calculation.
From the results, we see that the transceiver energy is always
smaller than the aforementioned two transmission strategies. When
simulating on a channel environment similar to a dynamically
varying one, another factor 2 can be achieved compared to the
constant PER approach.

4.2. Result analysis

Our simulations use the Markov channel model [3] with increasing
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channel numbers corresponding to worse channel conditions. In
this first set of simulations, fixed channel states have been used.
Figure 1 shows the energy cost with one user down streaming the
Foreman sequence with quality PSNR 35 dB. Clearly, in any
channel conditions, our proposed Expected PSNR schedule
outperforms all other schedules by at least a factor 2. For good
channel states (low number channel states), the energy gains more
than factor 8, while over bad channel states (high number ones) the
energy gains around factor 2.

Moreover, Expected PSNR and Constant PER schedules behave
similarly for good channel states, while Constant PER and SoA
schedules behave similarly worse than Expected PSNR for bad
channel states: to maintain a low packet loss probability, the bad
channels require more transceiver energy consumption (e.g., more
MAC layer retransmissions are needed). With the Expected PSNR
approach, by reducing the low PER requirements of low
importance video packets, the energy cost naturally lowers down.

Figure 2 shows the energy costs for four video sequences
transmitted simultaneously over the time variant channel.
Obviously, a weighted averaging phenomenon occurs over the
different static channel states, achieving an overall average energy
gain of Expected PSNR of a factor 2 over Constant PER, which
itself is a factor 2 better than the SoA approach.

The impact of the different user QoS requirements’ on the
overall energy cost is shown in Figure 3. The four different
sequences with QoS requirements 35dB, 33dB and 31dB are tested
simultaneously on the time variant channel. Clearly, lower PSNR
QoS requirements lead not only to lower energy requirements, but
also to larger relative energy gains of the Expected PSNR
scheduler, compared to others, yielding a larger scalability in
energy gains at lower requested quality.

6. CONCLUSIONS

We have introduced an applicationt+wireless cross-layer
optimization framework to fairly minimize the wireless transceiver
energy consumption for simultaneously multiple video streams
downloading over a WLAN. Relying on the IEEE 802.11 standard
and scalable video coding, the proposed solution optimally
schedules the packets by both optimizing the link layer scaling and
sleeping scheme and introducing rate-distortion properties of video
sequences into the scheduling optimization framework. Results
have shown that, in comparison with a state-of-the-art approach
and with our previous work, the proposed PSNR target approach
achieves the energy cost with at least a factor 2 according to the
user requirements.
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