
SPEECH CODEC OPTIMIZATION BASED ON CELL BROADBAND ENGINE

Zhenbo Zhu, Qing Wang, Bo Feng, Ling Shao

IBM China Research Lab, Beijing, 100089

{zhuzb / wangqing / fengbo / shaol} @ cn.ibm.com

ABSTRACT

Cell broadband engine (CBE) is a multi-core processor

jointly developed by Sony, Toshiba and IBM. The multi-

SPE architecture makes it powerful for streaming media

processing, such as voice over IP application. In this paper,

a CBE based IP media server (IMS) architecture is proposed

and the workloads of ITU-T G.723.1 and GSM-AMR

encoder on CBE are analyzed with some preliminary

optimization result from both CBE simulator and real CBE

hardware. Branch instruction reduction, data level

parallelism (SIMD), instruction level parallelism and

aligned SPU local store access techniques are applied in our

single precision floating-point based reference software

optimization on Cell. The performance we have achieved

demonstrates the Cell competence for computation intensity

applications in telecom industry

Index Terms — Multimedia System, Cell Broadband

Engine, Speech Codec, Optimization, Voice Conference

1. INTRODUCTION

IP media server (IMS) is an essential element of next

generation network (NGN). The market pressure and

network deployment worldwide make IMS develop quickly

in recent years. The central function of IMS is to process

media stream, especially for voice related applications. A

typical IP media system should complete announcements,

interactive voice response (IVR), conferencing, speech

recognition and Fax. Some IMS can support video

processing for video conference implementation.

For telecom media processing, it needs to process very high

density streams, such as compressed voice stream. For

example, if an IP media system is required to support

several hundreds of three-party conferences with ITU-T

G.723.1 compressed format, the computation load is very

high. Therefore, the computation capability is the key issue

for an IMS. In current market, both hardware and software

solutions have been proposed. For hardware solution, the

media processing is processed by DSP or ASIC, while for

software solution, the work is done by general purpose

processor (GPP) [1]. Compared with software solution, the

most advantage of hardware solution is the computation

capability since it’s designed dedicated for specific purpose.

Using multiple DSPs to co-process the stream data can

significantly improve the computation capacity [2].

However, both of the software and hardware solutions face

the challenges of performance/cost (price or watt). In order

to improve the computation density, hardware solution

providers have two choices. One is to optimize the media

processing algorithms to reduce the workload; the other is to

select more powerful DSPs or novel processors.

Cell broadband engine (CBE) is a single-chip multi-core

processor jointly developed by Sony, Toshiba and IBM. It’s

directed toward distributed processing targeted for media-

rich applications such as game consoles, home media server,

and accelerating systems. Its special architecture makes it

powerful for streaming processing. In our work, we

proposed and developed a simple IMS architecture with

basic Voice Conference function on single CBE processor,

and have preliminary optimization results for the key

components of the IMS system -- G.723.1 and AMR

encoder. The optimization techniques are summarized and

the results are obtained on simulation environment and a

real Cell Blade Server [3].

The paper is organized as follows. The cell broadband

engine and general software development flow are

introduced in section 2. In section 3, the overview of the

IMS System on CBE is given, and the workloads of speech

codec are analyzed and the optimization work is introduced.

The testing results are presented in section 4. Finally, we

conclude the paper.

2. CELL BROADBAND ENGINE

The Cell processor consists of one PowerPC Processor

Element (PPE), eight Synergistic Processor Elements (SPE)

and memory flow controllers (MFC). The PPE unit is a

general purpose 64-bit RISC core used for operating

systems and program control, while the SPE is optimized

for efficient data processing. These units are interconnected

with a coherent on-chip element interconnect bus (EIB).

II 8051424407281/07/$20.00 ©2007 IEEE ICASSP 2007

The system frequency of Cell can achieve 3.2GHz and the

computation capability is 256GFlops. The block diagram of

Cell architecture is shown as Fig 1.

Fig. 1 Cell Processor Block Diagram [4]

The SPE unit is designed for high performance computing.

It has 256KB local memory and supports up to 16-way 128-

bit SIMD (single instruction multiple data) operation. It

offers a high bandwidth interface to a direct memory access

engine that can transfer 32 GB/sec to and from the 256KB

local memory. Each SPE can initiate up to 16 independent

DMA transfers [5]. Therefore, it provides a coherent offload

engine for the PPE.

A typical software development flow on CBE is as follows:

Module mapping to the multi-core CBE architecture.

Workload and bottleneck analysis against hardware

constraints for the algorithms implementation.

Developing PPE and SPE code.

Accelerating the computing consuming code on SPU

by SIMD and other optimized methods.

Re-balance the computation and data movement

Turning the whole system

3. SPEECH CODEC WORKLOAD ANALYSIS AND

OPTIMIZATION

In this section, an overview of the IMS based on Cell

processor will be presented at first. The implementation and

workload analysis of the IMS’s key components -- speech

codecs will be discussed based on CBE following. Finally

some basic optimization techniques for the speech codecs

are given.

3.1. Overview of the IP Media Server on CBE

We proposed a simple IMS architecture on a single CBE,

which has the basic functions of a Voice Conference System

shown as Fig. 2. Considering the uncouple relationship

between different components in one frame-duration and the

limited text code size, no functional component will be split

and mapped into two SPU or more. The PPU of the CBE

will be dedicated to network packets processing and the

scheduler of the whole work flow of the system. It will

process the network packets from/to IP network, control the

data flow, and assign, schedule and link the work of each

SPU.

Fig. 2 Function Diagram of the IMS prototype on CBE

We selected ITU-T G.711a/u, G.723.1 and GSM-AMR as

the supported speech codecs in our IMS prototype due to

their wide usage in current VoIP and GSM system.

According to their workloads on the Texas Instruments’

DSP and Intel CPU, we believe that the G.723.1 and AMR

speech encoder will be the most computation consumed

components in our system. Our work will focus on the

G.723.1 and AMR speech encoder optimization on the SPU

at the first stage.

3.2. Workloads analysis of speech codec on the SPU

As the beginning of the development work for the IMS

system based on Cell processor, we analyzed the workload

of G.723.1 and AMR codec by porting their reference code

from ITU-T and ETSI organization on Mambo [6], which is

a full system simulator of CBE and can simulate the Cell

processor very accurately.

ITU-T and ESTI provides the reference codes both for

fixed-point and floating-point implementation. For Cell

processor, it is compatible with fix-point and float-point

operations. A workload test is executed for the reference

code selection and workload analysis. We ported both the

single precision floating-point and fix-point original

reference codes of the G.723.1 / AMR encoder to single

SPU on Mambo. The cycles per frame of the six most cycle

consumed functions of the G.723.1 6.3kbps encoder are

listed in Table 1. The peak cycles consuming per frame of

the whole encoder is listed in Table 1 also.

II 806

Table 1 Comparing results from the un-optimized fix-

point and single precision floating-point based reference

software on single SPU
Function of

G.723.1

6.3kbps

encoder

Fix-point

implementation

cycles per frame

(FX)

Floating-point

implementation

cycles per frame

(FP)

Cycles

Ratio

(FX / FP)

Find_Fcbk 32974050 3962326 8.3

Find_Acbk 21372478 1701510 12.6

Estim_Pitch 5807765 392469 14.8

Comp_Lpc 2382348 139308 17.1

Lsp_Qnt 1750182 258887 6.8

Comp_Ir 1710425 248228 6.9

Encoder 67857340 6978988 9.7

From table 1, we notice that the floating-point implemented

speech codec has significantly better performance on SPU.

The reasons are analyzed as follows:

The reference code quality impacts codec performance

significantly. For example, there are too much branch

operations in the reference code which heavily reduce the

performance of SPU because of the huge stall cycles of

branch operation [7].

SPU is optimized for single precision floating-point

computation, and few fix-point operations are not hardware

supported. For example, there is no saturation operation

instruction on SPU. All the saturation operations will be

handled using branch or shift operation with much overhead.

Fix-point based implementation will introduce more

instructions for an essential floating-point application like

speech encoding.

And there are some other reasons driving us use floating-

point implemented speech codec on CBE. The coefficients

of the speech models and the excitations in G.723.1 and

AMR standards are floating-point based essentially. Hence,

the floating point is much suited if the hardware supports.

And, the single precision floating-point has 23 significant

bits. It can fully satisfy the precision requirements of speech

codec with a few additional double precision operations.

Based on the above discussion, we used floating-point

reference code for our IMS implementation on CBE. And

based on the algorithm analysis for the G.723.1 and GSM-

AMR encoder, we think the primary operation of the

G.723.1 and AMR encoder is dot product. And the basic

computation is multiply-add. We believe these speech

encoding are computation consumed workload and will be

very suited for CBE. In our work, we set all the code of the

encoder in the local store of the SPU, and change the Heap

memory allocation to the Stack memory allocation to reduce

the local store control of the SPU, and give a basic

optimizing for the speech encoder.

3.3. Optimization Techniques of speech codec on the

SPU

SPU core on Cell is a tailored and sensitive vector processor.

The code should be vectorized to exploit the strength of

SPU. Another problem is the local memory of SPU. The

size of Local Store in each SPU is only 256KB, which

should be allocated for the Application Binary Code, Data,

Heap, Stack, DMA Transfer Buffer and SPU side Software

Framework Code. A carefully tradeoff between the size and

the performance of the code must be considered in the

optimizing work.

We adopt the following optimization techniques for AMR

encoder optimization on Cell platform.

1) Reduce Text Code Size

As we known, the G.723.1 and GSM-AMR are multi-rate

speech codec, there are several different Tables and codes

for specific compressing rate and will not be used together

by the encoder in one frame-duration. And one SPU has

only 256kB local store which is limited for the whole

application like speech encoding. So we divide the speech

encoder into the rate-related part and non- rate-related part.

The rate-related part will not resident in the SPU Local

Store and will be exchange when the speech encoder change

its compressing rate. It is much effective for the adaptive

multi-rate speech encoder.

2) Reduce Branch

We notice that branch can significantly influence the

efficiency of the SPU in some components of the Speech

Encoder. Because SPU is an in-order processor with no

branch prediction, any judgment will result in the SPU stall,

such as the “if” operation, rolling (“for”), min / max

judgment and absolute operation. And we believe that lots

of judgment can be avoided by some optimized technique.

For example, using the compare–select function instead of

short judgment function is a good optimization method for

most branches in Speech Encoder.

3) Align SPU Local Store Access

The best assess pattern for SPU is data and structure aligned

with vector operation. The Scalar and unaligned access will

result in many additional instructions for data aligned and

scalars extracted from vectors. In some case, we can operate

the scalar as the vector. This method solves the data access

problem of the SPU which can not be made as SIMD

pattern.

4) Optimize instruction pipeline for the instruction level

parallelism

The SPU has two pipelines for instruction issue, one for

computing instructions and the other for instructions

accessing Local Store. If two conjoint instructions can be

placed in the different pipeline with no dependency, the two

instructions can be dual-issue. Each instruction has its

II 807

latency and Stall cycles which will influence the efficiency

of the SPU due to the dependency.

5) Apply SIMD instructions to explore data level

parallelism

SIMD and the large register file are the direct ways to

accelerate the code. In speech encoder, the primary

operation is dot product which has less data relativity and

can be easily SIMD.

4. PEROFRMANCE RESULTS

The optimized G.723.1 and AMR encoders are test on

Mambo for cycle numbers of each function. The results are

listed in Table 2. The speed-ups of each function of G.723.1

encoder are selected shown as Fig. 3. The encoding channel

numbers supported on single CBE are test on a real Cell

Blade Server at 2.4GHz shown as Table 3. (8 SPUs of the

CBE are used for speech encoding.) After the preliminary

optimization, we reduced 75% cycles of the AMR encoder,

78% cycles of G.723.1 5.3kbps encoder and 86% cycles of

G.723.1 6.3kbps encoder consuming successfully. In

another words, the peak performance of optimized encoder

is 4~7 times faster than the original one. Furthermore, Cell

processor can work at 3.2GHz. That means the performance

results can be much better. (Shown as Table 3)

Table 2 Performance of the preliminary optimized encoder

test on Mambo

Speech Encoder
G.723.1

5.3kbps

G.723.1

6.3kbps

GSM-

AMR

(peak)

Cyc. per frame 921672 936538 616267

Code size 139.3kB 139.3kB 178.5kB

Application Speed-up 4.59 7.45 4.1

0

5

10

15

20

25

Fin
d_

Fcb
k6

3

Fin
d_

Fcb
k5

3

Fin
d_

Acb
k

E
st
im

_P
itc

h

Ls
p_

Q
nt

S
ub

_R
in
g

U
pd_

R
in
g

C
om

p_I
r

E
rro

r_
W

ght

C
om

p_L
pc

D
eco

d_A
cb

k

A
to

Ls
p

C
om

p_P
w

Ls
p_

In
t

Ls
pt

oA

M
em

_S
hi
ft

R
em

_D
c

Filt
_Pw

U
pda

te
_E

rr

W
ght

_Lp
c

Ls
p_

In
q

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

Speed Up Ins Reduced Cycles 53 % Cycles 63 %

Fig. 3 Function speed-ups of the G.723.1 encoder test on

Mambo

Since it is the preliminary optimization for the speech codec,

the cycles per instruction (CPI) of the optimized codes are

1.46~1.54, while the theoretical optimum CPI is 0.5. And

the dual-issue rates of our optimized codes are less than

35%. That means there is over 40% stall cycles cost in our

optimized codes, and the double-issue rates are very low.

Considering the potential of the algorithms optimizing, there

are still much potential for our latter optimization.

Table 3 Performance of the preliminary optimized encoder

test on real Cell Blade Server

Speech Encoder
G.723.1

5.3kbps

G.723.1

6.3kbps

GSM-

AMR

(peak)

Channels Supported

on one Cell, achieved

(8SPU at 2.4GHz)

640 616 624

Channels Supported

on one Cell, expected

(8SPU at 3.2GHz)

853 821 832

5. CONCLUSION

In this paper, we proposed an IP media server architecture

based on Cell processor, demonstrate CBE performance for

G.723.1, AMR speech codecs, and explore the potential

opportunities for CBE in telecom industry. In Digital Signal

Processing area, there are many applications which have the

floating-point operations essentially. Traditionally, they

have to convert to use fix-point implementation due to the

power consuming and limited computing resource of the

traditional floating-point Digital Signal Processor. We

believe the Cell processor can be used widely for those

applications with much better performance.

6. REFERENCES

[1] “Next-generation media processing for the modular

network–Intel White Paper,” Intel.

[2] Qing Wang, Zhenbo Zhu, Yi Ge and Ling Shao,

“Design of IP Media Server for Voice Conference

Application”, APCCAS06, Singapore, Dec.4-7, 2006.

[3] http://www-03.ibm.com/technology/splash/qs20/

[4] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R.

Maeurer, and D. Shippy, “Introduction to the Cell

multiprocessor”, IBM Journal of research and development,

Volume 49, Number 4/5, 2005.

[5] Lurg_Kuo Liu, Sreeni Kesavarapu, etc. ”Video

Analysis and Compression on the STI cell Broadband

Engine Processor”, IBM Research Report, Feb., 2006.

[6] http://www.alphaworks.ibm.com/tech/cellsystemsim

[7] “Cell Broadband Engine Programming Handbook” IBM

Corporation

II 808

