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ABSTRACT

Developing error-control and error-resiliency methods for transmit-
ting delay-sensitive media content over the best-effort networks poses
several challenges. Due to the lack of QoS guarantees in the con-
ventional Internet as well as in emerging wireless networks, these
methods must continuously monitor the characteristics of the un-
derlying network and try to infer the incipient network conditions
so that they can take the necessary actions on time. This is utmost
important for enhancing the end-user quality, particularly in low-
delay multimedia applications. In this study, we tackle this problem
from an error-control method perspective and develop an innovative
framework that optimizes the retransmission decisions based on the
urgency and importance of the media packets.

Index Terms— Packet-switched networks, packet delay, jitter,
delay prediction, timeout estimation, video dependency structure.

1. INTRODUCTION

In a recent study [1], we developed an adaptive retransmission
timeout (RTO) estimation method for low-delay Internet video
applications. This method consisted of two main steps: delay
prediction and delay-boundary prediction. In the first step, we
exploited the temporal dependence among the packet delay samples
and used an adaptive linear delay predictor to produce the best
estimate in terms of the mean-squared error criterion. This predictor
computed the required predictor filter coefficients on the fly and did
not use any fixed coefficients. This way, we were able to carry out
delay prediction in an optimal fashion regardless of the source video
transmission rate and time-varying network conditions. For delay-
boundary prediction, on the other hand, we used a controller that
optimally managed the trade-off between the amount of overwaiting
and spurious retransmissions by regulating the bias to be added to
the estimate produced in the first step. The goal was to compute the
shortest timeout duration, and hence, to maximize the chance of on-
time error recovery such that the redundant retransmission rate did
not exceed a desired threshold. Our overall approach merely used
the delay samples observed at the client side.

In packetized video applications, however, timely delivery of
a packet does not guarantee successful decoding. This is because
many video coding standards, e.g., MPEG-x and H.26x, use motion-
compensated prediction to gain in coding efficiency at the expense
of inducing a dependency structure among the encoded video
frames. This dependency structure renders video frames unequally
important. For example, a predicted frame can only be decoded after
all the frames to which this particular predicted frame is referenced
(called ancestor frames) are received and decoded. This implies that
a frame missing during decoding not only causes errors or a freeze
during its display time, but also impedes the successful decoding of
all frames that are dependent on it (called descendant frames). The
resulting error propagation continues through all dependent frames

and usually decays slowly. It is therefore essential to optimize the
error control for each video packet/frame based on its importance.

In this study, we develop a media-aware RTO estimation
method that computes the timeout estimates by jointly considering
the interdependency relations and the decoding deadlines of video
frames. The architecture of media-aware RTO estimation is sketched
in Fig. 1. Naturally, we should select a shorter timeout duration
for packets belonging to more important and urgent frames than it
is for packets belonging to less important and non-urgent frames.
If the retransmission capability is severely limited due to scarce
bandwidth, we may even opt not to request a retransmission for less
important packets and save the retransmission opportunities for more
important packets. This prescient discrimination helps us achieve
a higher rendering quality of video at the client side without any
additional increase in the total transmission rate.

Fig. 1. Architecture of client-driven media-aware RTO estimation.

In the literature, a large number of studies recently explored the
problem of rate-distortion optimized media transmission in a variety
of setups (See the references in [2]). Inspired by the work of Chou
and Miao [3], these studies proposed solutions to find the optimal
transmission and/or error-control policies by solving a Markov
decision process (MDP) framework. However, to make the analysis
tractable and obtain a manageable solution, the original MDP
framework ignored the correlation between consecutive packet delay
samples, and adopted the assumption of no dependency between
the packet loss events and packet delays. These assumptions may
hold true for low-bitrate video transmission where the packets are
transmitted at large intervals and the delay/loss correlation between
the packets is rather insignificant. However, as we will discuss in
the next section, these assumptions may not hold if the packets are
transmitted at small intervals. In this case, packet delays and loss
events will be correlated, and ignoring this correlation will produce
sub-optimal transmission policies.

2. PROBLEM FORMULATION

We solve the problem of media-aware timeout estimation within
a finite-horizon optimization framework: at each decision epoch
a set of frames are considered, and the optimal timeout durations
are computed for each packet/frame. Let S denote a set of
frames and assume that the frames within this set have well-defined
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interdependency relations that are known by the client. The critical
step in media-aware RTO estimation is to develop an expression
for evaluating the expected video quality of set S in terms of the
packet decodability probabilities. As it will be clear shortly, the
decodability of a packet depends on its on-time delivery probability,
therefore, on the amount of its timeout duration, as well as the
decodability of the packet(s) on which this packet is dependent.

In our derivations, we quantify the video quality by the
average rendered frame rate. We preferred this metric over more
sophisticated ones since this metric does not require the knowledge
of per-packet distortion information (which can only be extracted
during the encoding process). This feature makes it a practical and
easy-to-work-with metric. By definition, the achieved frame rate for
set S is computed by

QS = f0 ×
η+
S

ηS
, (1)

where f0, η+
S

and ηS are the original frame rate, the number
of decodable frames and the total number of frames in set S,
respectively. Generally, a video frame is packetized into one or more
equal-sized packets. Thus, without loss of generality, we assume
that the decodable fraction of frame Fu is given by the ratio of the
number of decodable packets in frame Fu (denoted by υ+

u ) to the
total number of packets in frame Fu (denoted by υu). Hence, we
have

η
+
S =

ηS∑
u=1

υ+
u

υu

. (2)

Since f0 and ηS are constants in (1), our goal reduces to computing
the optimal timeout duration for each packet in set S such that η+

S
is

maximized while the expected redundant retransmission probability
does not exceed the desired limit. With our notation listed in Table 1,
we formalize our optimization problem as follows:
Given: A set of frames, S.
Objective: Find the optimal timeout for each packet in set S.

τ opt = arg max
τ

η
+
S (3)

Subject to: Expected redundant retransmission probability stays
within the required limit.∑ηS

u=1

∑υu

n=1
pf [n]∑ηS

u=1
υu

≤ pf (4)

Given a set of frames, the optimization problem defined in (3)
and (4) requires the delay prediction for R future packets, where
R =

∑ηS

u=1
υu. That is, if n∗ denotes the last successfully-received

packet, we need to predict the delays for packets n∗ + 1, n∗ + 2,
. . ., n∗ + R. For this purpose, we use the multi-step version of the
2nd-order autoregressive, denoted by AR(2), delay predictor that we
proposed in [1]. The r-step AR(2) predictor is defined as follows:

s̃
r
2[n] = E {s[n]|s[n− k], r ≤ k ≤ r + 1} 1 ≤ r ≤ R. (5)

In the following discussion, we develop the mathematical
framework for media-aware RTO estimation based on our earlier
work [1], and illustrate the relation of the observed delay samples,
timeout estimates, playout buffer size and retransmission round-trip
times to the video quality. The following equations are provided in
a generalized form, however, it should be noted that for packet n,
the corresponding r-step predictor filter and error statistics are used,
where r = n− n∗.

Let pn denote the probability of packet n being received by its
decoding deadline, tD[n]1. In our problem scenario, each packet has

1Here, the decoding deadline represents the difference between the
transmission time at the server and the decoding time at the client.

An Set of the ancestor packets for packet n

ε
r
2[n] Prediction error for packet n

Fεr

2

Cumulative density function of ε
r
2

Fu Frame u

f0 Frame rate of the original video
I[n] Retransmission indicator function for packet n

ηS Total number of frames in set S
η+
S

Number of decodable frames in set S
pf [n] Pre-mature timeout probability for packet n

pf Desired probability of timing out pre-maturely
pn Probability of on-time delivery for packet n

p1
n Probability of on-time initial transmission for packet n

p2
n Probability of on-time retransmission for packet n

Pn Decodability probability for packet n

QS Video quality of set S
r[n] Retransmission round-trip time for packet n

S Set of frames considered in the optimization
s[n] Observed delay for packet n

s̃
r
2[n] Predicted delay for packet n

τ [n] Additional amount of waiting for packet n

tD[n] Decoding deadline for packet n

υu Total number of packets in frame Fu

υ+
u Number of decodable packets in frame Fu

Table 1. List of the notation for the optimization problem.

one initial transmission and one retransmission opportunity. We first
examine these cases separately and then combine them together to
compute pn.

The first step is to calculate the probability of on-time initial
transmission for packet n. Due to the correlation between the delay
samples, this probability is given as follows:

p
1
n = P {s[n] ≤ tD[n]|s[n∗], s[n∗ − 1]} . (6)

Expressing this conditional probability in closed form, however, is
difficult. Instead, we can avoid the conditions by substituting s[n]
with s̃

r
2[n] + ε

r
2[n]. The conditional in (6) can be now expressed as

an unconditional probability of the random variable ε
r
2:

p
1
n =

{
Fεr

2
(tD[n]− s̃

r
2[n]) , if s[n] < ∞;

0, if s[n] = ∞.
(7)

Note that p1
n is still conditioned on whether packet n is lost or not

since the prediction error is only defined for non-lost packets. Thus,
we also need to compute the loss probability of packet n.

In order to understand the relation between the packet loss and
delay, we plot the loss probability of packet n∗ + r as a function
of the delay of packet n∗. Fig. 2 shows that the loss probability for
packet n∗ + 1 is negligible if packet n∗ experienced a delay smaller
than 220 ms. However, if packet n∗ experienced a delay between
220 and 260 ms, the chance of being lost for packet n∗+1 increases
up to 50%. Clearly, there is a strong dependence between the loss
probability of packet n∗ + 1 and the delay of packet n∗. More
importantly, a noticeable dependence also exists between the loss
probability of packet n∗ + r and the delay of packet n∗ for r ≤ 10.
Ignoring this dependence and merely using the average packet loss
rate (2.2% for this particular trace) would result in either an overrated
or underrated packet loss probability. Therefore, it is important that
we express the loss probability of packet n as a conditional on the
last observed delay sample.

P {s[n] = ∞} = P {s[n] = ∞|s[n∗]} (8)

In practice, the conditional loss probability distribution can be
generated on the fly. A closed form expression is not essential for
media-aware RTO estimation.
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Fig. 2. Relation between the packet delay and loss probability.
Produced by streaming an H.264-encoded test sequence (300 Kbps)
over an Internet topology [4] in ns-2 environment [5].

Having computed the first step of the on-time delivery
probability, we now compute the probability of the retransmission
for packet n being received before the decoding deadline. Recall
that when a packet is received, the client predicts the delay for
the subsequent packet and estimates the timeout duration. If the
expected packet is still not received within this time, a retransmission
request is sent to the server. Assuming that the request is
immediately processed by the server, the probability of on-time
retransmission equals

p
2
n = P {s̃r

2[n] + τ [n] + r[n] ≤ tD[n]} , (9)

where r[n] is the round-trip time of the retransmission. It is
important to note that in (9) we do not impose any condition on the
previous delay samples. The reason is that the correlation between
r[n] and s[n∗] is usually insignificant. Thus, p2

n can be computed
from the empirical distribution of r in a straightforward manner.

Once we have computed p1
n and p2

n, it is easy to express pn as

pn = p
1
n + I[n]× (1− p

1
n)p2

n, (10)

where I[n] is an indicator function: I[n] = 1 if a retransmission is
requested for packet n, and 0 otherwise. Considering that the chance
of a retransmission arriving earlier than the initial transmission is
negligible, (10) reduces to

pn =(1− P {s[n] = ∞}) Fεr

2
(tD[n]− s̃

r
2[n]) +

I[n]×P {s[n] = ∞}P {s̃r
2[n] + τ [n] + r[n] ≤ tD[n]} . (11)

As mentioned previously, packet n can only be decoded if
all of its ancestor packets were decoded successfully. Thus, the
decodability probability of packet n equals the following product:

Pn = pn ×
∏

n′∈An

pn′ , (12)

whereAn denotes the set of the ancestor packets for packet n. Here,
we observe how the dependency structure of the streamed video
explicitly factors in the video quality. More implicitly, we also notice
that as more of its descendant packets are received by the client,
an ancestor packet becomes more important since its successful
delivery would enable the decoding of several packets. Note that
in (12), we are able to express Pn as the product of individual packet
decodability probabilities since any existing correlation is already
taken into account while computing pn.

Given the packet decodability probabilities, we compute the
expected number of decodable packets in frame Fu from υ+

u =∑υu

n=1
Pn. Finally, the expected video quality of set S is calculated

by plugging υ+
u into (2).

The last step in our optimization problem is to calculate the
redundant retransmission probability for each packet. We compute
the pre-mature timeout probability for packet n as follows:

pf [n] = I[n]× P {s̃r
2[n] + τ [n] < s[n]}

= I[n]×
(
1− Fεr

2
(τ [n])

)
. (13)

A solution to (3) is feasible only if the expectation of the redundant
retransmission probability over all packets in set S satisfies the
constraint given in (4).

3. SOLUTION APPROACH & IMPLEMENTATION ISSUES

Depending on the complexity of the video dependency structure and
the horizon of the optimization, the solution to our optimization
problem can potentially require a large number of multiplications
and additions. In practice, however, solving the system given in (3)
and (4) is less complicated than it may seem. For example, when
the network conditions are not severe and packet delays are below
a certain threshold, the client can safely skip computing a timeout
estimate for the subsequent packets based on the knowledge that the
loss probability for those packets is negligible. The delay traces we
collected reveal that the majority of the packets usually experience a
non-critical delay, implying that the computational load of the RTO
estimation on the client is often minimal.

It is, however, critical to solve (3) and (4) for the client
when it infers an incipient congestion. An important issue in this
optimization is the selection of the optimization horizon and the
granularity of the timeout durations. Suppose that we have R packets
and we need to select a timeout duration for each of them from a set
of H quantized values. In this case, our solution has a complexity of
O(HR). Due to the exponential relation, the optimization horizon
R cannot be chosen arbitrarily large. Furthermore, the predictive
accuracy of the multi-step delay predictor degrades with R. Fig. 3
shows that the prediction-error standard deviation doubles at step
four and triples at step 10 for all three delay traces collected at
different streaming rates. Since a poor prediction has no practical
use, we suggest that the optimization horizon should not exceed
10. On the other hand, the value of H depends on the maximum
complexity tolerable by the client. In this study, we selected the
timeout durations among seven different values from the set H =
{0 ms, 20 ms, 40 ms, 60 ms, 80 ms, 100 ms,∞}.

For R-step prediction, we require R sets of the predictor filter
coefficients, αr

1,2 and αr
2,2. To compute these coefficients, we use

a window-based approach. The window size W is chosen short
enough to ensure the pseudostationarity of the input data over the
length W . Our tests indicate that W = 20 is a good choice. Given
this window size, the predictor filter coefficients are computed by
solving the Yule-Walker equations, which requires the knowledge of
the sample autocorrelations for the first two lags in our case [1].
When a new sample is observed, the oldest sample is removed
from the window and the other samples remain unchanged. Thus,
the sample autocorrelations can be updated in an efficient manner.
Furthermore, the filter coefficients vary over time, but due to the
pseudostationarity of the data, we observe that αr

1,2 + αr
2,2 = 1.

Thus, it is sufficient to compute only one of the coefficients for each
r.
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Fig. 3. Variation of the prediction-error standard deviation with r.

4. SIMULATION RESULTS

In this section, we analyze the performance of the media-aware
RTO estimator. We denote this estimator with RTOMedia−aware(R),
where R is the optimization horizon. Naturally, RTOMedia−aware(1)

performs exactly the same as the media-unaware RTO estimator
that was proposed in [1], which we denote by RTOAR(2).
To better illustrate the impact of R on the performance of
RTOMedia−aware(R), we compare the on-time arrival rates of the
individual frames in a GOP. For this purpose, we encoded a test
sequence with a standard H.264 codec [6] at 300 Kbps and 20
frames per second. The adopted GOP structure was one I-frame plus
nine P-frames. We streamed this video multiple times between two
end-points in a moderately-congested Internet topology, where the
forward-path packet loss rate averaged 5%.

In Fig. 4, we plot the average on-time arrival rates of the
individual frames when the playout buffer is 500 ms. Under
the adopted simulation settings, we observe that RTOAR(2) could
deliver approximately 30% of the retransmissions on time, and as
expected, this success rate did not vary much among the frames. In
contrast, RTOMedia−aware was able to deliver as much as 40% of
the I-frame retransmissions on time at the expense of least important
P-9 frames. In other words, RTOMedia−aware recovered more of
the important video content by not increasing the streaming rate, but
by relinquishing the recovery of the less important content. It is
important to note that as we increased the optimization horizon, the
optimization gain improved.
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Fig. 4. Variation of the frame on-time performance with the
optimization horizon when the playout buffer is 500 ms.

Next, we plot the average on-time arrival rates when the
playout buffer is relaxed to 600 ms. In this case, RTOAR(2)

delivered 90% of the retransmissions on time. Naturally, the on-time
retransmission probability improved with an increase in the playout
buffer size. Although RTOMedia−aware still produced better quality
video, the performance gap between the media-aware and media-
unaware approaches reduced with respect to the previous case. Thus,
we conclude that the media-aware RTO estimation becomes more
crucial under low end-to-end delay requirements, and as the delay
requirement relaxes, its performance will converge to that of the
media-unaware RTO estimation.

I P−1 P−2 P−3 P−4 P−5 P−6 P−7 P−8 P−9
99

99.2

99.4

99.6

99.8

100

Frames in a GOP

A
ve

ra
ge

 O
n−

T
im

e 
A

rr
iv

al
 R

at
e 

(%
)

 

 
R = 1
R = 2
R = 5
R = 10

Fig. 5. Variation of the frame on-time performance with the
optimization horizon when the playout buffer is 600 ms.

5. CONCLUSIONS

Previously, we proposed an autoregression-based adaptive RTO
estimation method for low-delay Internet video applications. This
method substantially outperformed existing estimators such as
Jacobson’s algorithm and recursive weighted median filtering. In
this study, we furthered our approach and developed a media-aware
RTO estimator. This RTO estimator computes the optimal timeout
duration for each packet such that the rendered video quality is
maximized for a given retransmission rate budget. Our simulations
show that media-aware RTO estimation provides a significant quality
improvement over its media-unaware counterpart, particularly when
the application requires a low end-to-end delay.
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