HIGH-LEVEL TRAFFIC-VIOLATION DETECTION FOR EMBEDDED TRAFFIC ANALYSIS

Julien A. Vijverberg™?, Nick A.H.M. de Koning™? Jungong Han,
Peter HN. de Withm, Dion Cornelissen’

(1) Eindhoven University of Technology, The Netherlands, (2) Prodrive B.V., The Netherlands

ABSTRACT

This paper presents the design of a robust and real-time
traffic-violation  detection system for cameras on
intersections. We use background segmentation and a novel
road-model to obtain the candidate traffic participants. A
region-based tracking system, equipped with static
occlusion-reasoning, tracks the positions of the objects in the
scene. A computationally efficient camera model is defined
which only requires three input parameters and enables the
extraction of key object parameters like vehicle type and
speed. Experiments have shown that an impressive average
processing rate of 63-150 Hz is achieved, with high average
correct road detection and object-type classification rates of
93-94% and event detection accuracy of 85%.

Index Terms—Background Subtraction, Machine
Vision, Semantic Analysis, Traffic Information Systems

1. INTRODUCTION

Due to the growing number of cameras for surveillance and
security purposes in society, the amount of processed video
information (and partly recorded) is growing exponentially.
To avoid excessively large databases with non-relevant data
and make efficient use of the available bandwidth, it is
desired to design cameras with content-analysis capabilities
and networking facilities. A particularly interesting new
application is automated traffic control for surveillance and
detection of dangerous situations. This kind of high-level
decision-making is only possible if the video is analyzed at
the pixel, object and semantic level.

Significant research has been devoted to traffic analysis.
Atev et al [1] present a real-time method for detecting
collisions on intersections. However, this system does not
provide sufficient semantic-analysis results like the type of
the vehicle, and they use a computationally expensive
camera model. In [2], Lim et al. discussed stop-bar violation
detection on intersections using areas assigned by an
operator. The camera is calibrated on a fixed position and
needs manual input, which decreases flexibility. Hu et al. [3]
present an accident-prediction method using 3D object-
models, which is computationally expensive and needs
manual extraction of trajectories. The above examples are
interesting but strongly limited to specific cases. A key
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Fig. 1: Overview of the complete system.

paper for our work is [4], where Kumar er al. present a
complete system, which can handle both highway and urban
scenes. Unfortunately, this system has two major drawbacks:
(1) suddenly revealed new background cannot be handled
efficiently and (2) the camera model is complex and requires
accurate and elaborate manual tuning.

This paper aims at the robust detection of traffic violations
on urban intersections, while aiming at real-time embedded
implementation and with a large flexibility in camera
installation. The key features are wvehicle tracking,
classification and detection of predefined violations on
urban intersections. It will be shown that by adding better
models (such as road models) in the segmentation, the
semantic level of analysis (violation detection) can be
improved while enabling the real-time performance. Another
attractive feature is the use of an elegant camera model, that
does not require much input and is accurate enough to
support behavior analysis in real-time.

2. ARCHITECTURE DESCRIPTION

The architecture of our system is illustrated in Fig. 1. Let us
now briefly explain each module of the diagram.

The pre-processing module performs conventional image
enhancement and control operations. The motion
segmentation separates the objects from the background with
assistance of the road model. To this end, a road-detection
module is implemented which leads to the generation of a
road model. The tracking block tracks all objects through
consecutive frames. It uses a two-dimensional region-based
blob tracking based on an adaptive double exponential
smoothing predictor.The occlusion-reasoning module solves
occlusions for objects disappearing behind static structures
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and other objects. The geometric analysis module performs
object-size measurements, which are used in the
classification module to classify different object types. The
violation detection uses event-raising boxes, which are user-
defined areas in the image where specific event
measurements are carried out to check for illegal object
behavior.

The sequel of this paper concentrates on two novel aspects.
First, the motion segmentation is enhanced with knowledge
of a simple, six-parameter and yet accurate road model and
information of automatically-learned occluding background
structures. Second, a reduced pinhole-camera model for
geometric analysis of traffic objects yields a high-
performance classifier. As a result, we obtain one of the few
complete violation detection systems achieving good results
and real-time performance simultaneously.

3. ALGORITHM HIGHLIGHTS
3.1 Traffic Object Segmentation

Traffic-object detection is based on motion segmentation,
which consists of background estimation and background
subtraction. The quality of traffic-object segmentation
heavily depends on the constructed background image.
Ideally, a background estimator quickly adapts to changes,
but is insensitive to the presence of real objects in the
foreground. The structure of the algorithm is as follows.

1. Subtract background from input.
2. Perform foreground region tracking.
3. Selective update of background.
a. Update if no object present using tracking results
(This defines the initial binary exclusion mask).
b. Check for correct background using road model
(This defines the final binary exclusion mask).
c. Integrate newly revealed background using road
model.

The foreground regions of the tracked objects that have
passed a series of consistency tests are appended to the
exclusion mask. Non-traffic objects usually fail the
consistency test and we propose to integrate such objects in
the background to prevent false foreground regions.
However, vehicles that just enter the scene and then stop for
a relatively long period will not yet pass the consistency test,
and will inevitably be confused for background. Earlier
proposed systems cannot prevent this problem since they do
not know whether the visible object in the background is
correct. We solve this problem by obtaining this knowledge
using an automatically constructed road model, because in
traffic sequences large parts of the background consist of
traffic roads.

When the road model classifies a background pixel as ‘road’
and the foreground pixel at the same position is ‘not road’,
then it is a logical assumption that updating the background
at that position will not give further improvements.
Therefore, the road model is of great help in preventing the
vanishing of real vehicles in the background. This is
particularly beneficial in stopping zones of intersections.
Moreover, the road model also contributes to the correction
of suddenly revealed background, since it provides
information of what is expected to be visible in the
background. If a new part of the background is revealed, it
results in a false foreground region. The road model
computes the number of pixels in such a region that is
enclosed in the road model. If the majority of pixels in a
region is classified as ‘road’, then it is considered as new
background and is quickly incorporated in the background.

3.2 Road Detection

This algorithm aims at automatically estimating a model for
the pixels in the background that belong to the traffic roads.
The following model is used for road classification. The
road model is derived in two algorithm steps.

1. A training set of road pixels is obtained. Since vehicles
dominantly move on the road, the tracking system can
construct the training set by keeping track of the positions
where tracked objects frequently occur; the pixels at those
positions in the background form the training set.

2. The variances and averages of the road model are
computed. Initial values are obtained from the training set.

a. A pixel p=(py, pu, py) is classified as ‘road” when for
each YUV-component i, with road average u; and
standard deviation o;, the relation |p- u;|< 40; holds,
where the 1;’s are empirical thresholds.

b. Post-processing on standard deviations o; is required
to remove outliers from the training set and generalize
for different road types. Since traffic roads typically
contain little color, oy and o, are bounded to a
maximum value, which reduces the effect of outliers.
The computed initial oy is usually large and therefore
upper-limited to prevent a high false-positive
classification rate. The same but opposite statement
holds for the false-negative rate.

3.3 Occlusion Reasoning

We also present an outline of an algorithm capable of
learning large occluding regions, such as trees. This allows
model-based reasoning which can be used to improve the
motion segmentation and tracking modules.

Occlusion is the most difficult problem in tracking systems.
We make a distinction between static and dynamic
occlusions regions. Existing systems mainly focus on
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Fig. 2: External Camera
model

Fig 3. Results of 3D shoebox
fitting.

dynamic (inter-object) occlusion, while static (object-scene
structure) occlusion is overlooked, or only implicitly
handled by heuristics. Our system handles static occlusion
by obtaining the regions in the background that frequently
occlude or split foreground objects, without explicit
modeling. A vehicle splits e.g. when it drives behind a traffic
light or traffic pole; this is called Thin-Structure Occlusion
(TSO). TSO regions are obtained by looking for image
positions where one side of the bounding box of a tracked
object remains static, while the opposite side moves in the
direction of the object motion. Since such objects disappear
behind an object, there must be an edge visible in the
background. We combine these two observations to extract
TSO regions. Complete static occlusions are extracted by
keeping track of image regions where objects frequently
become fully occluded. The static occlusion regions are
always in the same image positions, since we are using a
static camera. The tracking system is improved by taking the
locations of static occlusion regions into account.

3.4 Camera Model in the Geometric Analysis

In order to analyze a traffic scenario, we need to study the
geometric relation among camera position, road, vehicle
position, etc. The installer of the camera only has to define
the height / and the angle o of the camera with respect to the
ground plane, see Fig. 2. The focal length fis extracted from
a Look-Up Table (LUT) relating the zoom factor and the
focal length. The principal point (o, 0,) is set to the center
of the image. Homogeneous image coordinates p’ and
ground-plane coordinates p are related by the homography
matrix H,, via p=H,,p’ with H,, being

h 0 —o.h
H, =0 hcosa fhsina-ohcosa |. )
0 sina —fcosa—o ssina

The scaling factor in p only depends on the image
coordinate y’. Thus, for any reasonable values of y’, the
inverse transformation to Euclidian coordinates can be
implemented efficiently using a LUT, thereby saving
numerous multiplications.

=== L.

(c) Computed road model (d) Static occlusion regions

Fig. 4: Background (BG) result with (a) and without (b) selective
updating using the road model of (c). Detected static occlusion
regions are shown in (d).

The presented camera model is applied to distance
measurements using three-dimensional shoeboxes. These are
fitted around objects, using the vanishing points of the
object’s direction, similar to [1]. Visual results are illustrated
in Fig. 3(a)-(d).

3.5 Object Type Classification

Classification is required by most semantic analysis
applications in traffic. The feature vector x(n) measured at
frame n is constituted from N=5 elements: (1) the vehicle-
or object-length and (2) width (to discriminate e.g. cars from
persons), (3) the object’s maximum speed (km/h) for
example to distinguish bicycles from motorcycles, (4) the
bounding box filling degree e.g. for discriminating solid
vehicles from “open” vehicles, and (5) the fraction of
contour pixels for similar reasons as (4). Five object types
are used (pedestrian, bicycle, motor, car, truck/bus). For
each object type ¢, every feature f'is modeled by its average
t,r and variance o,/. A naive Bayesian classifier is used to
determine the within-frame type likelihood ¢/(n) for x(n)
according to

& & -, S
_\ ! 2 Y-ty
o,(n) = fZ; - log(2a; )+ fZ; o @)

A simple update rule is employed, which only requires the
accumulation of the overall likelihood ¢,y per type up to
frame N. After applying this update rule, for each ¢, ¢,y is
added to the currently highest likelihood and clipped to a
certain minimum value to keep the results within boundaries.

4. PIXEL-LEVEL RESULTS

The result of the median-based background estimation
enhanced with selective updating using the constructed road
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model (see Fig. 4(c)) is shown in Fig. 4(a). Several groups
of cars and a bus appear and they are waiting to enter the
intersection. In the standard median-based approach, these
traffic objects have vanished into the background, and thus
tracking would not be possible. Consequently, it can be
noticed that the estimated background in Fig. 4(a) is much
better than the one in Fig. 4(b), which does not use the
selective update algorithm. A second problem is that after
background subtraction, the vanished vehicles lead to false
non-traffic foreground. Also, due to the selective updating,
Fig. 4(a) clearly shows significant improvement in the
background image. The automatically constructed road
model used to obtain this good result is illustrated in Fig.
4(c). Visual inspection of this road model shows that high
performance can be achieved with our road model. An
impressive average correct classification rate of 93% has
been measured using manually generated ground-truth data
for four different intersections. In Fig. 4(d), the static
occlusion regions (for instance the trees) are correctly
detected.

5. SEMANTIC-LEVEL RESULTS

The performance of the classifier has been tested with two
traffic video sequences (10 and 7 min.) recorded at different
intersections. The training data is extracted from a third
sequence. From the results, we concluded that the
classification into five object types, which satisfies most
applications, leads to 94% correct decisions.

Finally, having defined all aspects, the overall system was
tested to be good enough for making high-level semantic
classifications. As an interesting example, we attempted to
detect traffic violations. Experiments showed that one-way
driving violations are measured quite easily, when the event
raising boxes from the user are placed on suitable positions,
leading to 100% correct violation detection. Another
experiment showed that detecting illegal bus-lane driving is
more difficult. We measured 10 false violation detections
out of 13 detections and 2 false rejections out of 28
rejections, resulting in a correct classification rate of 70%.
This lower rate is explained by initially classifying the
wrong object type, which can be improved by simply
logging the violation event and evaluating the object type
after its disappearance. Table 1 summarizes our results.

The average frame rates for four sequences have been
evaluated. The sequences were captured with 25-Hz frame
rate and were MPEG-1 or MPEG-4 SP encoded. In order to
obtain reliable measurements and a serious performance
indication, more than 75 minutes of video data were
evaluated. The traffic-analysis system was implemented on a
P-IV 3.2-GHz computer. The minimum and maximum
average frame rates are an impressive 63 Hz and 150 Hz,
respectively, thereby offering real-time performance.

Table 1. Performance Summary

Performance Metric Result

Road correctly classified 93%

Type correctly classified 94%

One-way driving correct 100%

Bus-lane violation correct 70 %
6. CONCLUSIONS

In this paper, we have presented a multi-level video analysis
system for violation detection on urban intersections. The
key of our system at the pixel-level is to very selectively
update the background, which is achieved by the feedback of
the tracking information and the incorporation of a novel
road model. The road model helps in selectively supporting
or rejecting foreground objects. This is especially useful on
intersections, where traffic objects can be standing still for a
long time. The road model can be implemented with high-
performance giving on the average 93% correct
classification rate. This attractive solution can be
generalized to work for alternative background-estimation
techniques as well.

The most important contribution of the semantic-level part is
the efficient pinhole camera model. The traffic-object sizes
are efficiently measured using three-dimensional shoebox
models for the objects. This leads to a low-cost classifier
with a low number of features and correct classification rates
up to 94%. Example applications have shown that our
system satisfies the requirements for semantic-level analysis.
The aim is to pursue real-time performance on an intelligent
camera. The complete system has been implemented and
achieves real-time performance (63-150 Hz processing rate),
thereby enabling embedded realizations in intelligent
cameras in the near future.

A possible enhancement of the system would be the
inclusion of a shadow handler into the object-segmentation
module, which would correct the image region of an object
and split more falsely merged objects.
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