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Abstract—A modified Kalman filtering approach to on-line
music beat tracking is proposed in this work. The proposed
algorithm first detects onset signals from the acoustic waveform.
Then, it tracks the beat and the tempo using the Kalman filter.
Two techniques (i.e., observation smoothing and lock detection)
are adopted to improve the tracking performance furthermore.
It is shown by experimental results that the proposed modified
Kalman filtering approach provides satisfactory beat tracking
performance.

Index Terms—Beat tracking, Kalman filter, music information
retrieval, lock detection

I. INTRODUCTION

Beat tracking is one of the fundamental problems in compu-

tational music perception studies. The development of accurate

beat tracking algorithms plays a key role in music transcription

and musical information retrieval. In this research, we are

concerned with real-time musical beat tracking from acoustic

data. The occurrence of beats and the tempo value of a music

piece are estimated on-the-fly as the music is played. The

tracking system predicts the next beat location and update the

tempo value based on all received data using a state-space

model. In some sense, it mimics the human behavior of beat

tapping along with the music procession. Thus, our developed

technique can also be used in real-time applications such as

automatic musical accompaniment.

Even though music beat tracking techniques have been

widely studied in the past, only a few of them consider the

processing of the audio data directly for real-time (or causal)

applications, e.g., [1], [2], [3], [4]. Scheirer [1] used a comb
filter to estimate the tempo and the beat instance. However,

his method is a open-loop one since new estimate values

do not adjust according to the prediction errors made in the

past. Following [1], Klapuri et al. [2] proposed an elaborate
graphical model to estimate periods and phases of several

metrical levels simultaneously. The beat tracking systems in

[3] and [4] exploit the particle filtering technique, which is

similar to the Kalman filter method. However, the particle filter

does not assume linearity and the Gaussian distribution. It is

also worthwhile to point out that the Kalman filter was applied

to the MIDI music format for real-time beat tracking in [5].

There are several challenges in performing on-line beat

tracking along with the incoming musical audio signals. First,

the underlying music usually do not have an apparent peri-

odicity of beats. Second, the music may pause for a while in

the middle of a song and no audio signals are available in this

temporal segment. Actually, the notion of beats is perceptual to

the human brain. Human can sense the beats by experiencing

consistent strong pulses over a time interval, and then keep

the hypothesis for the occurrence of future beats. If the tempo

changes slowly, human can adapt to this new system. This

suggests that a model-based beat tracking algorithm should

take the ”inertia” of tempos and beats into account.

To address the challenges, instead of using the particle filter,

we consider the use of a modified Kalman filter approach to

improve the performance of the Kalman-filter beat tracking

system. Our modification is built upon two techniques: obser-

vation smoothing and lock detection. The former addresses the

problem of observation selection: which onset pulse is most

likely to be the next beat. Since the estimated tempo period

and phase can be greatly affected by the difference between the

observed and estimated beats, a proper selection of the next

beat is crucial to the beat tracking performance. The latter

adjusts the noise variances of state variables according to the

tracking performance. When the tracking system works well,

the noise variance is set to zero. Otherwise, it is set to a larger

value. In other words, we can lock or unlock the tracking

system according to its performance.

The rest of this paper is organized as follows. The appli-

cation of basic Kalman filtering to on-line beat tracking is

discussed in Sec. II. Two modifications are presented in Sec.

III. Experimental results are reported in Sec. IV. Concluding

remarks are given in Sec. V.

II. BEAT TRACKING WITH KALMAN FILTERING

To set up the Kalman filter for beat tracking, we consider

the following dynamic system [3], [4], [5]:

xk+1 = φ(k + 1|k)xk + μk, (1)

yk =M(k)xk + υk, (2)

where the variance of υk is r(k) and the covariance matrix of
μk is

Q(k) =
[
σ2μ1 0
0 σ2μ2

]
, (3)

and where σ2μ1, σ
2
μ1 and υk are all zero mean Gaussian random

variables. In the context of our interest, we choose the state

variable as

xk = [τk,Δk]T ,

where τk and Δk are the temporal location of the current

beat and the period of the current tempo, respectively. Without

further information arriving, it is natural to predict the next

beat location at

τk+1 = τk +Δk
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and the next period is the same as the current one (i.e.,Δk+1 =
Δk). Consequently, the state transition matrix φ(k+ 1|k) can
be written as

φ(k + 1|k) =
(
1 1
0 1

)
. (4)

To observe the temporal location of the next beat, we transform

the musical audio data into onset signals that consists of a

sequence of pulses of varying spacing and magnitude. Since

no period information of the tempo is observed and only the

next beat location is observable, we have

M(k) =
(
1 0

)
. (5)

For music onset extraction, we consider two types of

music content changes: 1) instantaneous noise-like pulses

caused by percussion instruments; and 2) changes of music

pitches/harmonies due to the arrival of new notes. The fol-

lowing procedure is adopted to obtain music onsets. First, we

calculate mel-scale frequency cepstral coefficients (MFCC),

cm(n), for each shifting window of 20-msec with 50% overlap

(10 msec), where m = 0, 1, ..., L is the order of the cepstral

coefficient and n is the time index. Second, we compute the
change of spectral contents by examining the MFCC difference

between the average of the previous 3 windows, denoted by

c̄m,n′ , and that of the subsequent 3 windows, denoted by c̄m,n′′

with respect to current time index n for all m. Then, we can
adopt the following mel-scale cepstral distance

dn =
L∑

m=1

(c̄m,n′′ − c̄m,n′)2, (6)

as the onset detection function at time n.
It is worthwhile to comment that the energy change caused

by percussion instruments is typically reflected by the change

of cepstral coefficient c0(n) since it gives the energy at

time n. The harmonic changes due to new note arrivals are

reflected by the change of cepstral coefficients c1(n) and c2(n)
since low-order cepstral coefficients indicate low frequency

components of the spectrum. Generally speaking, when the

energy envelope of the spectrum changes, it will result in a

significant change in low-order cepstral coefficients such as

c1(n) and c2(n).
The basic Kalman filter consists of three major steps. First,

at time k, the Kalman filter predicts the beat location and the
tempo period at time k + 1, denoted by x(k + 1|k) based on
x(k|k) via

x(k + 1|k) = φ(k + 1|k)x(k|k). (7)

The Kalman filter also computes the covariance matrix P (k+
1|k) of the prediction error and Kalman gainK(k+1). Second,
yk+1 is observed at k+1 and we perform the following update:

x(k + 1|k + 1) = x(k + 1|k) +K(k + 1)[yk+1−
M(k + 1)x(k + 1|k)]. (8)

Finally, the error covariance matrix P (k+1|k+1) is updated
using new Kalman gain K(k+1) and error covariance matrix
P (k + 1|k).
As shown in Eq. (8), the Kalman filter is a feedback system,

where the prediction error is used to correct state variable xk.

It has a similar form as the least-mean-square (LMS) filter.

When the beat procession is well modeled by (1) and (2), the

Kalman filter converges to the correct beat location and tempo

period faster due to the use of the dynamic Kalman gain.

III. TWO PROPOSED MODIFICATIONS

A. Observation Smoothing

According to Eq. (8), an inaccurate observation yk+1 of
the next beat location will result in a large prediction error

that in turn affects the estimated state vector x(k + 1|k + 1)
greatly. To get an accurate observation of the beat location

is a critical task. In the on set detection scheme, we apply a

maximum detector to the onset detection function, dn, on a
fixed region around the estimated beat τk+1|k to get the beat
location prediction. Mathematically, it is obtained via

yk = argmax
τk+1|k−η+1≤n≤τk+1|k+η

dn, (9)

where η is a design parameter. Thus, the size of the search
window is ω = 2η as illustrated in Fig. 2.

Fig. 1. Illustration of getting the observation point from the detection function
via a local temporal window search.

In the onset detection scheme described above, it is assumed

that the largest value of dn in the neighborhood of τk+1|k is
the desired beat location. A sound burst with a large dn value
affects the tracking performance since it will be selected by

the maximum function in Eq.(9). To address this problem, we

propose several ways to obtain a more robust onset location.

First, the size of the search window, ω, around τk+1|k is chosen
to be proportional to the estimated period Δk|k so that the
freedom of tempo variation will not be affected by a fixed

pre-defined value. A lower bound ζ on the value of ω is also
applied so that ω will not be too small when Δk|k is small.
As a result, the search window size is set to

ω = 2η = 2min(γΔk|k, ζ), (10)

where 0 < γ < 1 is the ratio of the window size and the

tempo period. We set γ = 0.125 in our experiments as reported
in Sec. IV. Second, the onset detection function dn inside

the search window are weighted by a Hamming window to

reflect its location dependency. Third, to prevent the sound

burst effect furthermore, the center of the search window is

shifted from

τk+1|k = τk|k +Δk|k

to

τ ′
k+1|k = τk|k +Δ′

k|k (11)
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where

Δ′
k|k =

1
M

M∑
i=1

Δk−i+1|k−i+1.

Since Δ′
k|k is an average of past M estimated periods, it

provides a smoothed version of the tempo period, which makes

the algorithm more robust.

B. Lock Detection

The lock detection algorithm [6] adjusts the covariance

matrix Q(k) in (3) adaptively according to the tracking

performance of the Kalman filter. When the performance is

satisfactory, σ2μ1 and σ2μ2 are set to zero. When the perfor-
mance is unsatisfactory, their values are set in proportion to

the current estimated tempo, Δk|k. The tracking performance
can be evaluated by the prediction error ek+1 = [yk+1−M(k+
1)x(k + 1|k)] at each step k. The smaller ek+1 is, the better
the tracking performance.

In our implementation, we consider the average of recent

prediction errors. If it is smaller than ξ times the standard
deviation of period

√
r(k), where 1.0 ≤ ξ ≤ 3.0 is pre-defined

threshold value, the performance is said to be satisfactory.

Otherwise, we choose

σ2μ1 = σ2μ1 = Δ
′2
k|k/12.

Larger σ2μ1 and σ2μ2 values will enlarge the Kalman gain
K(k+1) that “unlock” the Kalman filter so that it puts more
weights on incoming observations. The above discussion is

summarized mathematically below:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σ2μ1 = σ2μ2 = 0 as
1
M

M∑
m=1

em ≥ ξ ·
√
r(k),

σ2μ1 = σ2μ2 = Δ
′2
k|k/12 as

1
M

M∑
m=1

em < ξ ·
√
r(k).

(12)

The noise variance of observation, r(k), in Eq. (12) is a
function of the tempo period that is to be estimated. Thus,

it is desirable to eliminate its dependency on the tempo. One

way to do so is to set r(k) = Δ′2
k|k/12 · 0.001. Since both

1
M

∑M
m=1 em and

√
r(k) in Eq. (12) are scaled by

√
Δ′2
k|k/12,

the threshold of the lock status will solely depend on the their

ratio, and its dependency on the tempo is removed. The lock

detection algorithm separates beats into two groups according

to their prediction errors. For example, if all beats in a music

segment are “locked” according to Eq. (12), the beats in this

segment are tracked successfully.

IV. EXPERIMENTAL RESULTS

An example of applying the Kalman filter to beat tracking is

illustrated in Fig. 2. The excerpt is Aphex Twin’s Actium, which
style is electronica. It has a stable tempo due to percussion.

The estimated tempo period as a function of time is shown

in Fig. 2(a). With good initial values in the beat location and

the tempo period, the beat can be well tracked afterwards as

shown in the figure. The estimated tempo period is between

94 and 96 samples. The prediction error as a function of time

is shown in Fig. 2 (b). One can see from Eq. (8) that the

prediction error affects τ(k + 1|k + 1) and Δ(k + 1|k + 1),
which is confirmed by Fig. 2.

Fig. 2. An example of beat tracking on Aphex Twin’s Actium: (a) the
estimated tempo and (b) the prediction error.

To evaluate the beat tracking performance of the basic and

modified Kalman filters, we perform tests on a dataset of

324 song excerpts. The dataset is selected from part of test

data for the audio tempo induction contest in ISMIR 2004

(International Conference on Music Information Retrieval) [7].

It includes rock, classical, electronica, latin, samba and some

jazz, AfroBeat, Flamenco, Balkan and Greek music. Each

excerpt is of 20 second long with a nearly constant tempo

as the ground truth. Their tempo ranges between 24 and

242 BPM (Beat Per Minute). The ground-truth beat locations

are annotated over time. Onsets are extracted using 20-msec

window with 50% overlap, i.e., the time resolution is 10-msec.
To initialize the Kalman filter, we set σ2μ1 = σ2μ2 = T 20 /12,

where T0 = 100 is the period corresponding to 60 BPM. It
offers sufficient variance for those music excerpts with tempo

larger than 60 BPM. For music excerpts with tempo smaller

than 60BPM, the dynamic model will need more steps to

converge to a stable tempo. For the observation measurement,

we choose noise variance r(k) = T 20 /12 · 0.001 initially.
Furthermore, we set η = 15 in Eq.(9), ζ = 5 in Eq.(10),
M = 3 in Eq.(11) and ξ = 2.0 in Eq.(12). The initial values
for state variables τ0 and Δ0 are estimated from the first 3 sec
of each song excerpt by applying the comb filter method [1].

The performances of several beat tracking algorithms are

evaluated and compared in Table II, where the performance

metric is the percentage of beats correctly tracked [4], [5].

They are: the benchmark method (the basic Kalman filter

method), the modified method # 1 (with observation smoothing

only) and the modified method # 2 (with both observation

filtering and lock detection). A beat location is correct if the

detected beat is within 15% region of the real beat while the

detected period is within 15% of the ground-truth period.

Since it is easy to get confused by the actual tempo

with its double or half tempo, we show the performance of
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Fig. 3. The lock ratio histogram for all dataset.

TABLE I

PERFORMANCE COMPARISON OF PERCENTAGES OF CORRECTLY TRACKED

BEAT LOCATIONS.

Correct Tempo Accepted Tempo
Basic Kalman Filter 31.98% 53.58%

Modified Kalman Filter #1 42.78% 66.85%
Modified Kalman Filter #2 48.95% 71.17%

“correct tempo”, where the estimated tempo is close to the

ground-truth tempo and that of “accepted tempo”, where the

estimated tempo is equal to double or half, triple or one-

third of the ground-truth tempo in the table. We see that

the modified method #1 improves the performance of the

benchmark from 31.98% to 42.78% for correct tempo tracking

and from 53.58% to 66.85% for accepted tempo tracking.

By adding lock detection, we can get further improvement

of 6.17% and and 4.32%, respectively.

Another performance measure is the percentage of the

longest consecutive region of correctly tracked beats over the

total length [2], [4], which is used to demonstrate the capability

of the underlying algorithm in tracking beats continuously.

Since the data used are of 20-sec long and the first 3 seconds

are used for the initial condition computation, the remaining

17 seconds are used for performance evaluation. The results

shown in Table II are the average over all the 324 music

excerpts. Since ξ in Eq. (12) sets the threshold for the

lock status, its value affects the longest consecutive region

of correctly tracked beats. The smaller ξ is, the easier the
algorithm is “out of lock”. Due to the change of variances in

σ2μ1 and σ
2
μ2, the longest consecutive region becomes shorter.

A larger value of ξ is observed to have a slightly longer
consecutive region than a smaller value.

TABLE II

PERFORMANCE COMPARISON OF PERCENTAGES OF THE LONGEST

CONSECUTIVE REGION.

Accepted Tempo
Basic Kalman Filter 38.06%

Modified Kalman Filter #2 with ξ = 1.0 47.27%
Modified Kalman Filter #2 with ξ = 2.5 51.93%

Finally, the distribution of the lock ratio of the proposed

modified Kalman filter with observation smoothing and lock

detection is shown in Fig. 3, which is the ratio of the lock

length of a Kalman filter tracking algorithm over the entire

length of a music excerpt. It show the time percentage in which

we are confident on the estimated beat location and the tempo

period. As shown in the figure, 87.6% of excerpts are locked

over 60% of time and 62.9% of excerpts are locked over 80%

of time.

V. CONCLUSION AND FUTURE WORK

Basic and modified Kalman filters were proposed for music

beat tracking in this work. The performance of the basic
Kalman filter can be improved by the observation smoothing

and the lock detection techniques. These algorithms were

evaluated with a dataset of 324 music excerpts. It was shown

that the modified Kalman filter approach provides better per-

formance. More extensive performance evaluation and further

performance enhancement are interesting tasks to be done in

the near future.
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