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ABSTRACT

We present a general framework and an ef cient algorithm for track-
ing relevant video structures. The structures to be tracked are im-
plicitly de ned by a Matching Pursuit procedure that extracts and
ranks the most important image contours. Based on the ranking,
the contours are automatically selected to initialize a Particle Filter-
ing tracker. The proposed algorithm deals with salient video entities
whose behavior has an intuitive meaning, related to the physics of
the signal. Moreover, as the interactions between such structures
are easily de ned, the inference of higher level signal con gurations
can be made intuitive. The proposed algorithm improves the per-
formance of existing video structures trackers, while reducing the
computational complexity. The algorithm is demonstrated on audio-
visual source localization.

Index Terms— Video signal processing, tracking, feature ex-
traction, audio-visual processing.

1. INTRODUCTION

Object tracking is usually performed using appropriate description of
the appearance of a target, either at a global or local level. Examples
of global descriptions are simple templates [1], color histograms [2],
or active appearance models [3]. Examples of local analysis are the
methods developed to independently track and match feature points.
The KLT tracker [4] rst detects stable corners and then describes
their appearance with an af ne invariant template, computed on a
small region around the corner. The points detected at subsequent
frames are matched based on the appearance. More advanced fea-
ture point detectors account for rotation, scale changes of the under-
lying object structures [5]. All these methods are designed from a
tracking-centric point of view : (i) stable structures are used to facil-
itate tracking, and (ii) the representation is designed to reduce ambi-
guity between feature points. The interpretation of the information
obtained after tracking in the context of the considered signal is post-
poned to a subsequent analysis stage. But are stable structures also
relevant from a signal representation point of view?

We argue that a signal-centric (as opposed to a tracking-centric)
representation can extend the application of a feature tracking sys-
tem by fusing analysis and tracking in a single general framework.
The ability of tracking relevant structures of moving images would
provide spatio-temporal information that is intrinsically meaningful
for the representation of the video signal. Considering natural im-
age sequences as composed of successive 2D projections of 3D ob-
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jects describing smooth trajectories through time, one can assume
that sequences are well modeled by smooth transformations of a ref-
erence frame. In general, a large variety of geometric structures
can be found in a video sequence. A signal representation capa-
ble of exploiting video structural properties while keeping generic
and exible enough should thus be used. Such properties are intro-
duced into the video feature extraction process, considering spatio-
temporal video approximations using redundant dictionaries of geo-
metric primitives called atoms. Local deformations are then propa-
gated over time by updating the parameter eld of the atoms to ap-
proximate the sequence of frames. In this framework, relevant video
features are time-evolving oriented edges describing the geometric
structures of a scene and their temporal evolution. An algorithm
that aims at representing video sequences as a sum of relevant video
structures for coding purposes was proposed in [6]. This method de-
composes usingMatching Pursuit (MP) a reference frame as a sparse
sum of atoms taken from a redundant dictionary [7]. These struc-
tures are then tracked through time, decomposing the subsequent
frames with a modi ed MP algorithm that uses a priori information
inherited from previous frames. Although effective for audio-visual
source localization and separation [8, 9], this video MP algorithm is
formally and computationally very complex.

In this paper, we formalize the atom tracking problem to enable
a more intuitive interpretation of the decomposition results and we
reduce the computational complexity of the atom tracking scheme.
The tracker is automatically initialized by representing the rst frame
of a sequence as a combination of edge-like functions. These func-
tions are retrieved from a redundant dictionary of atoms using MP. In
contrast to classical tracking algorithms, the structures to be tracked
are implicitly de ned by MP that picks the most relevant image con-
tours. These visual features are then tracked with a Particle Fil-
ter (PF) [10]. The proposed scheme is demonstrated on audio-visual
source localization.

The paper is organized as follows. Section 2 presents the video
representation framework based on MP, and Sec. 3 the tracking al-
gorithm based on PF. In Sec. 4 we comment the experimental results
on audio-visual source localization based on edge tracking. Finally,
in Sec. 5 achievements and future research directions are discussed.

2. GEOMETRIC VIDEO REPRESENTATION

Each video frame is decomposed into a low-pass part, that takes into
account the smooth image components, and a high-pass part, where
most of the energy of edge discontinuities lays. Assuming that this
high-pass image I(x, y) can be approximated with a linear combi-
nation of functions Gx(x, y) retrieved from a redundant dictionary
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DV of 2D atoms, we can write :

I(x, y) ≈
∑

x[n]∈Ω

c
x[n]Gx[n](x, y) , (1)

where n is the summation index, cx corresponds to the coef cient
for every atomGx(x, y) andΩ is the subset of selected atom indexes
from DV .

The codebook DV is built by applying a set of geometric trans-
formations to a mother function G(x, y), in order to generate an
overcomplete set of primitives spanning the input image space. The
considered transformations are anisotropic scaling sx and sy , trans-
lations tx and ty , and rotation θ. The generating function G should
well represent edges; thus we use an edge-detector atom that is shaped
as a Gaussian along one axis and the rst derivative of a Gaussian
along the perpendicular one. To decompose I(x, y) over the code-
book DV we use MP, that iteratively retrieves the element of the
dictionary that best matches the signal.

We consider an approach where 2D primitives Gx(x, y) of the
form of (1), obtained in the expansion of a reference frame I1(x, y),
are tracked from frame to frame (The reference frame is the rst
frame of the sequence). The rst step of the MP algorithm decom-
poses I1 as

I1 = 〈I1, Gx[0]〉Gx[0] + R1I1 , (2)
where R1I1 is the residual component after approximating I1 in the
subspace described by G

x[0]. G
x[0] is chosen such that the projec-

tion |〈I1, Gx[0]〉| is maximal. This procedure is recursively applied,
and after N iterations we approximate I1 as

I1 =

N−1∑
n=0

c
x[n]Gx[n] + RNI1 , (3)

where c
x[n] = 〈RnI1, Gx[n]〉, R0 = I1 and RnI1 is the residual

after n iterations. In this way the reference frame I1 is decomposed
into N atoms G

x[n] that are tracked through time.

3. TRACKING VIDEO ATOMS USING PARTICLES

Tracking is performed using Particle Filter (PF), a parametric ap-
proach that solves non-linear and non-Gaussian state estimation prob-
lems [10] and can deal with multi-modal pdf s.

Let the reference image be represented with N atoms. If N is
relatively small, then the atoms can be tracked independently. The
assumption of independence is motivated by the fact that we are in-
terested only in the main video structures (i.e., the rst functions of
the MP decomposition). If few atoms are considered, then their in-
teractions are likely to be weak. These interactions can be estimated
by computing the scalar products between atoms: strong interac-
tions correspond to large scalar products (since atoms have unit norm
the maximum scalar product is 1), whereas weak interactions corre-
spond to small scalar products (i.e., close to 0). Figure 1 [Left] shows
the sum of the scalar products between atoms on the rst frame of
a test clip as a function of N . The total scalar product slowly in-
creases with the number of functions. In our experiments we will
consider the rst N = 30 atoms selected by MP : as a rst approx-
imation, it seems reasonable to track them independently. However,
neighboring functions can in uence each other ([11]) and future de-
velopments of this work will account for interactions between atoms.

Each atom G
x[n] is fully characterized by the set of parame-

ters x[n] in a 5D state space spanned by position, scale and rota-
tion parameters that describe its shape. PF solves the tracking prob-
lem based on the state equation, xt[n] = ft(xt−1[n],vt), and on

Fig. 1. Sum of scalar products between the atoms representing one
frame plotted as a function of the number of atoms [Left], and like-
lihood of a candidate atom computed on a region extracted from one
of the analyzed clips [Right].

the measurement equation, zt[n] = ht(xt[n],nt), where ft and ht

are non-linear and time-varying functions. The state variable xt de-
scribes the characteristics of target n at time t, thus it de nes the n-th
atom at frame t. To simplify the notation, the atom index n will be
omitted, since the atoms are tracked independently. {vt}t=1,... and
{nt}t=1,... are assumed to be i.i.d. stochastic processes. The prob-
lem consists in calculating the pdf p(xt|z1:t) at each time instant t.
This pdf can be obtained recursively in two steps, namely prediction
and update. PF approximates the densities p(xt|z1:t) with a sum of
Ns Dirac functions centered in

{
xi

t

}
i=1,...,Ns

as

p(xt|z1:t) ≈

Ns∑
i=1

ωi
tδ
(
xt − x

i
t

)
, (4)

where ωi
t are the weights associated to the particles :

ωi
t ∝ ωi

t−1

p(zt|x
i
t)p(xi

t|x
i
t−1)

q(xi
t|x

i
t−1, zt)

. (5)

The function q(·) is the importance density function which is of-
ten chosen to be p(xt|x

i
t−1), as it is done here. This leads to ωi

t ∝
ωi

t−1p(zt|x
i
t). A re-sampling algorithm can then be applied to avoid

the degeneracy problem [10]. In this case, the weights are set to
ωi

t−1 = 1/Ns ∀ i, and therefore ωi
t ∝ p(zt|x

i
t). The weights

are thus proportional to the likelihood of the measurement zt, given
the particles. Here the natural choice for the likelihood function is
the projection of the candidate atom over the image, since we want
to track important video structures, i.e. video atoms exhibiting high
projection on the image. This is also coherent with the represen-
tational framework formulated in the previous section. The likeli-
hood of a candidate particle is de ned as the absolute value of the
scalar product between the residual frame and the atom represented
by the particle. In order to favor candidates with high likelihood, this
quantity is ltered with a Gaussian kernel centered in the maximum
likelihood value and with variance σL, thus obtaining:

L(xi
t[n]) = exp

(
−

(LM
t [n]− |〈RnIt, Gx

i
t[n]〉|)

2

2 · (σLLM
t [n])2

)
, (6)

with LM
t [n] = max(|〈RnIt, Gx

i
t[n]〉|) , i = 1, . . . , Ns.

We want to highlight that the atom G
x

i
t[n] is not projected over

the frame It but over the residual at step n of the decomposition,
RnIt (see (3)). Figure 1 [Right] shows the likelihood function of a
candidate atom computed on a region extracted from a test clip.
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The best state at the time t, x̂t, is the particle xi
t with largest

weight, pondered by a factor that takes into account the similarity of
the particle with the corresponding best state at time t− 1 :

x̂t = x
M
t s.t. ωM

t = max(s(xi
t, x̂t−1) · ω

i
t) . (7)

The function s is a Gaussian in the 5D parameters space. The value
of s(x,y) is maximum when the particles x and y coincide and
it decreases exponentially as the distance between x and y in the
parameters space increases.

Alternative strategies to compute the best state would be to take
the particle with highest weight or to consider the Monte Carlo ap-
proximation of equation (4), i.e. the weighted sum of the particles [10].
However, we observed that unstable, noisy atom trajectories were
generated considering simply the particles with largest weights, due
to the multi-modality of the posterior pdf s (see Fig. 1 [Right]). The
Monte Carlo solution produces more stable atom trajectories, but in
this case there is no guarantee that the best state corresponds to an
atom that matches a real visual structure, since several local maxima
can be present in the likelihood function (Fig. 1 [Right]). The intro-
duction of the weight s(x,y) stabilizes the atoms tracks since the
algorithm tends to prefer states that are as similar as possible to the
previous ones, except if relevant modi cations occur. At the same
time, the representation of the scene is kept coherent.

4. EXPERIMENTAL RESULTS

In this section we present the results of the atom tracking method
using PF (MP-PF). We test the algorithm on sequences representing
one or two persons speaking and moving in front of a camera, taken
from the CUAVE database [12]1. The video data is at 29.97 fps
and at a resolution reduced from 480 × 720 to 120 × 176 pixels.
We use a 5-dimensional state model for PF, composed of the target
position, (x, y), the target size sx and sy and the orientation θ. In
all experiments we use a zero-order motion model with xed σtx =
σty = 2, σsx = σsy = 0.03 and σθ = 3.5. Note that the position
change is in pixels while the scale is in percentage and the orientation
in degrees. The Gaussian used to lter the likelihood function has
σL = 0.05. The PF tracker uses 150 samples.

In the rst experiment, the proposed MP-PF approach is tested
on four sequences representing one person speaking and moving in
front of the camera and it is compared with the video MP algo-
rithm [6] (3D-MP). Sample frames of two clips are shown in Fig. 2.
Both trackers are initialized with the same video atoms using MP as
described in Sec. 2. The edges are then tracked using a video MP
approach in 3D-MP, while our proposed method tracks the video
structures using PF as detailed in Sec. 3. In Fig. 2 the tracking re-
sults using the two algorithms are compared. The rst and third rows
show the results obtained with the 3D-MP approach, while the sec-
ond and forth rows show the results for the proposed MP-PF method.
In the second part of the sequence (second and third frames) the sub-
jects rapidly move towards the left. The 3D-MP tracker looses the
track of two edges in the rst case and of one in the second, while
the MP-PF tracker does not. The same behavior has been observed
in the other test sequences. While the 3D-MP algorithm easily loose
the track of fast moving edges, the MP-PF approach results more
robust, even if errors can be observed. In both sequences for exam-
ple it happens that the yellow atom associated with the upper lip is
temporarily associated with the lower lip or the chin.

In the second experiment, MP-PF is integrated in the audio-
visual fusion algorithm [8] to perform a source localization task.

1Only the luminance component of the video clips has been considered.

3D-MP

MP-PF

3D-MP

MP-PF

Fig. 2. Video atoms tracking. Footprints of different atoms are de-
picted with different colors. Results for the 3D-MP approach are on
the rst and third rows and those for the MP-PF method are on the
second and forth rows. From the second to the third frame the sub-
jects rapidly move towards their left : the 3D-MP tracker looses the
track of some edges, while the MP-PF tracker does not.

The audio-video features that are considered here are the same used
in [8, 9]. The audio signal is represented by a mono-dimensional
feature that estimates the average acoustic energy. The video signal
instead is represented using M = 30 video atoms and each atom
has a feature associated describing its displacement. Peaks are ex-
tracted from audio and video features and synchronization vectors
are built [8]. The video atoms exhibiting the highest degree of corre-
lation with the audio are detected using a simple relevance criterion
and the sound source location over the image sequence is estimated.
A sliding window of 70 frames length is used to compute the syn-
chronization vectors and to detect the video atoms that are more cor-
related with the audio. The observation window is then shifted by 20
samples and the procedure iterated.

We have tested the algorithm on four sequences of the CUAVE
database (g19, g20, g21, g22) involving two persons reading series
of digits in English. Figure 3 shows the results of the proposed ap-
proach detecting the mouth of the speaker in two sequences where
two persons speak in turns in front of the camera. In white are high-
lighted the footprints of the atoms found to be correlated with the
soundtrack. The mouths of the correct speakers are detected.

To quantify the accuracy of the method, the center of the speaker’s
mouth in the test sequences has been manually labeled, and the de-
tection performances compared with those of two cross-modal source
localization algorithms [8, 13]. In [13] a method is proposed to de-
tect the mouth of the speaker founding the image zone over which
the mutual information between audio and video features is maxi-
mized. As already stated, here we use the same scheme as in [8],
with the difference that in [8] the 3D-MP approach is used to track
the video atoms.

The active speaker’s mouth is considered to be correctly detected
if the position of the most correlated video atom falls within a circle
of 50 pixels of diameter centered in the labeled mouth center. All
methods detect correlated video structures every 20 frames and thus
performance is evaluated with this same frequency. Table 1 sum-
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Fig. 3. Frames from clips g19 [Top] and g21 [Bottom]. The foot-
prints of the most correlated atoms are highlighted. The mouths of
the correct speakers are detected.

marizes the results obtained for the three methods in term of per-
centage of test points at which the speaker’s mouth is correctly de-
tected. The use of geometric video decompositions combined with
an audio-video event detector is con rmed to improve the results ob-
tained maximizing mutual information ([13]). The proposed method
has a detection performance similar to that of Monaci’s algorithm,
slightly improving previous results for sequence g19 but obtaining
inferior performances on clip g22.

The MP-PF method improves the tracking performances of the
3D-MP tracking algorithm, as shown by the results in Fig. 2. This is
indeed interesting considering that the 3D-MP algorithm, even with-
out jointly tracking groups of structures, takes into account atoms’
interactions, which was demonstrated to increase the accuracy of the
3D-MP approach [11]. We argue that a MP-PF algorithm that takes
into account atoms’ dependencies would correct tracking errors due
to atoms’ interactions (Fig. 2) and would allow to improve the audio-
visual localization results, that by now are essentially equivalent to
those obtained using 3D-MP (Table 1). Concerning the computa-
tional complexity, we have tested the two methods on a video se-
quence whose 30 principal video atoms were tracked through time.
The MP-PF algorithm clearly outperforms the 3D-MP approach, re-
sulting approximately 7 times faster.

5. DISCUSSION

We presented a new framework and an ef cient algorithm to repre-
sent and track relevant video structures. The proposed method im-
proves the 3D-MP video representation algorithm presented in [6],
which is designed as a coding algorithm and poses problems from
the tracking point of view. The parameters of the video atoms are in
fact coarsely quantized to achieve better compression performances,
introducing tracking errors. Moreover, atoms are tracked using a
search window of reduced size, which limits the robustness and ac-
curacy of the tracker. These limitations are overcome by de ning the
video atom tracking problem in the well grounded and understood
framework of PF, which ensures robustness, exibility and lower
computational complexity than the 3D-MP algorithm.

Experiments show that the proposed tracker is more robust and
accurate than the 3D-MP one, while being considerably less time
consuming. The audio-visual source localization algorithm, how-
ever, does not improve accordingly. This is mainly due to the fact
that while in [8] the 3D-MP algorithm takes into account atoms’ in-
teractions, the current MP-PF method does not. This in certain situa-
tions produces less stable atoms trajectories because of interferences
between atoms, as shown in Fig. 2. However these results show that

Clip Nock[13] Monaci[8] (3D-MP) Proposed (MP-PF)
g19 41 87 94
g20 93 93 93
g21 79 81 78
g22 79 87 80

Table 1. Results expressed in percentage of correct detections.

there is room for further improvements by designing a mechanism
that accounts for the interactions between video atoms. The track-
ing framework developed in this paper seems to be appropriate to
continue the evolution of our system.
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