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ABSTRACT

Music genre classification is a hot topic in pattern recognition

and signal processing. Classical supervised methods need

lost of labeled music data to train a classifier. In this paper,

we propose a semi-supervised genre classification algorithm

which is developed on several labeled music tracks and lots

of unlabelled tracks. Three features are extracted from the

each music track and manifold regularization method is used

to design the classifier. Experiments on a large number of test

music data show that semi-supervised method can improve

the classification accuracy.

Index Terms— Semi-supervised Learning, Music Genre

classification

1. INTRODUCTION

Large amount of music collections can be found in the Inter-

net due to the increasing growth of bandwidth and storage.

Automatically classifying music into different classes is of

great practical importance in information retrieval, and ques-

tion answer systems. Currently, most classification work is

done by hand because it is difficult to give precise definition

of different kinds of music. Therefore, automatic classifica-

tion is significant for it can reduce much of the labeling work.

Music genre is one of the top-level descriptions for hu-

man to organize the music collections [1, 2]. Music genre

classification, which is defined as the most restrict form (i.e.,

the computer classify each music audio signals to one class),

can be divided into two stages: feature extraction and classi-

fier design [1]. While there have been various feature extrac-

tion methods [3, 4, 5, 6, 7, 8, 9], the classification methods

have only been compared in [1] to the best of our knowledge.

Supervised methods such as support vector machines (SVM)

may produce good results, however, they require the scrupu-

lous labeling work by experts, which is time consuming and

costly. Unsupervised methods could work automatically, but

they are difficult to determine the cluster number and show

worse results than the supervised methods [1]. Therefore, the
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idea of combining supervised and unsupervised methods is

brought forward, which is the semi-supervised method [10].

Semi-supervised classification methods, have been proven

that they can both reduce the labeling work and improve the

accuracy rate [11, 12, 13]. For classification problem, it is

intuitive that every point should be similar to the points in its

local neighborhood. Especially when dealing with high di-

mensional data, the data are more likely to distribute on a low

dimensional manifold in some subspace. Therefore, regular-

izing the learned functions being smooth on the manifold or

graph constructed by the data is often helpful.

In this paper, we propose a semi-supervised method ap-

plied to the content based music genre classification problem.

We use the manifold regularization method based on least-

square framework [11]. The algorithm penalizes the func-

tion both in reproducing kernel Hilbert space (ambient space

RKHS) and the intrinsic geometry. Therefore, the learned

function is sufficiently smooth both in RKHS and on man-

ifolds or graphs. By adding the unlabeled data, the accu-

racy rate can be improved. Fig. 1 shows that, a weighted

graph can be constructed via k-nearest neighbor method to

exploit the local geometrical (manifold) structure among mu-

sic tracks based on a music similarity measure. The tracks

which have the same genre, have a large weight; the tracks

which have different genres may also have a weight due to

the small similarity measure.

This paper is organized as follows. In section 2, we in-

troduce the semi-supervised algorithm. In section 3, we show

the features and similarity measurements we used in this pa-

per. Experiments are given in section 4. Finally we conclude

in section 5.

2. REGULARIZED LEAST-SQUARES FRAMEWORK

We first consider a binary class case. Suppose we have l la-

beled data and u unlabeled data. Given the training data set

{x1, ...,xl,x1+1, ...,xl+u} and {y1, ..., yl}, where xi ∈ X is

the feature vector and yi ∈ Y is the label, we not only want to

estimate the soft labels {f(x1), ..., f(xl+u)} of the training

data points, but also want to know what is the soft label f(x)
of a new test point x. To incorporate the additional infor-

mation of unlabeled data, we use the following regularization
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Fig. 1. Music Graph.

framework:

f∗(x) = arg min
f∈HK

∫
X×Y

V (y, f(x))dP (x, y)

+λ1||f ||
2
K + λ2||f ||

2
I (1)

where
∫

X×Y
V (y, f(x))dP (x, y) is expected risk, and the

loss function can be arbitrary form V (y, f(x)). The solution

f∗(x) is a function X → R which lies in a bounded con-

vex subset of RKHSHK defined by a positive definite kernel

function K : X ×X → R. The kernel function satisfies the

Mercer condition. ||f ||2K is the traditional Tikhonov regular-

ization term in RHKS [14], and ||f ||2I is the new regulariza-

tion term based on graph or manifold [11, 12]. λ1 and λ2 are

the parameters which control the tradeoffs of these two terms.

To simplify the representation of (1), we first use the em-
pirical risk to replace the expected risk. Here, we use the

least-squares loss function. Thus, the empirical risk is given

by:

1

l

l∑
i=1

(yi − f(xi))
2 (2)

Second, according to Representer Theorems [15], under very

general conditions on the loss function V , the optimal solu-

tion of f can be given as:

f(x) =

l+u∑
i=1

αiK(xi,x) (3)

Substituting (2) and (3) into (1), the objective can be rewrit-

ten as a function of the l + u dimensional vector α:

α
∗ = arg min

α∈Rl+u

1
l
(y − JKα)T (y − JKα)

+λ1α
T Kα + λ2α

T KLKα (4)

where y = [y1, ..., yl, 0l+1, ..., 0l+u]T is aRl+u vector. J is a

diagonal matrix, which is J = diag(11, ..., 1l, 0l+1, ..., 0l+u).

(K)(l+u)×(l+u) is the Gram matrix which satisfies that Kij =
K(xi,xj). By using the Gaussian kernel, we have:

K(xi,xj) = exp{−
D(xi,xj)

2

2σ2
} (5)

where D(xi,xj) is the distance measure of music similarity,

which will be presented in section 3.

To use the graph or manifold regularization term, we de-

fine G = (V,E) as an weighted neighborhood graph. V is

the vertex set of graph, which can be defined on the training

set, including both labeled and unlabeled data. E is the edge

set which contains the pairs of neighboring vertices (xi,xj).
The neighboring vertices can be defined as such that either

D(xi,xj) < r or xj (xi) is among k nearest neighbors of xi

(xj). Then the adjacency matrix W of graph is defined as:

Wij =

{
exp{−

D(xi,xj)
2

2σ2 } if (xi,xj) ∈ E

0 otherwise
(6)

and the normalized graph Laplacian [16] is:

L = I−D−
1
2 WD−

1
2 (7)

where the diagonal matrix D satisfies Dii = di, and di =∑l+u

j=1 Wij is the degree of vertex xi. Here the adjacency

matrix and the normalized graph Laplacian are both symmet-

ric.

Note that (4) is convex, by differentiating (4) and let the

derivative to be zero, we obtain the optimal solution [11]:

α
∗ = (JK + λ1lI + λ2lLK)−1y (8)

where I is the identity matrix. Therefore, we can submit (8)

to (3) to obtain the soft labels.

If λ2 = 0, we have the following objective function:

f∗(x) =
1

l

l∑
i=1

(yi − f(xi))
2 + λ1||f ||

2
K (9)

This is the supervised case which is the traditional regularized

least-squares. The solution is then:

α
∗ = (K + λ1lI)

−1y (10)

where K is an l × l matrix and y is [y1, ..., yl]
T . It has

been shown that this algorithm is competitive to the popular

method support vector machine (SVM) [14].

For multi-class classification, it is easy to use the one-

against-one or the one-against-the-rest method to construct a

classifier based on a set of binary classification algorithms.

We also solve this as a one-against-the-rest problem. This

is reasonable because it only requires to change the form of

the labels of the data points, and does not need to modify the

algorithm framework. Therefore, for each labeled point, we

set label as yi = [−1, ..., y
(j)
i = 1,−1, ...,−1] if a point xi is

in the jth class.
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3. MUSIC SIMILARITY MEASUREMENT

In this section, we present three music similarity measures

which calculated by the music analysis toolbox [6].

3.1. MFCC-EMD

MFCCs (Mel frequency cepstrm coefficients) are useful fea-

tures to characterize music timbre. However, it is not easy to

measure the similarity of MFCCs between two music tracks.

One smart method is first calculating the histogram of MFCC

of each track, and using k-means [7] or GMM [9] to approxi-

mate it, then calculating the Kullback Leibler (KL) distance of

two histograms. The Earth Mover’s Distance (EMD) which

incorporates the KL distance can be used [7]. We compare

three typical songs, whose names are “Sonata I Minuet” (clas-

sical), “Sonata II Minuet” (classical) and “Heavenly Rain”

(rock). We use the first 20 MFCC coefficients (expect the 0th

coefficient) and 30 k-means centers to gain the features. The

features are shown in Fig. 2. We can see that the former two

songs are more similar to each other.
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Fig. 2. Illustration of MFCC-EMD Features. (The solid curve

represents the center of each cluster.)
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Fig. 3. Illustration of Fluctuation Pattern Features.
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Fig. 4. Illustration of Spectrum Histogram Features.

3.2. Fluctuation Pattern

Fluctuation pattern (FP) is a feature to describe periodicities

of music tracks [4]. It uses two stages to extract the features.

In the first step, a track of music is segmented into several 6

second piece sequences. The piece of music contains loud-

ness information of a time in a specific critical-band. In the

second step, it calculates the rhythm pattern which depict the

strength and rate of beats within the frequency bands. Then

each FP feature can be represented by a 20×60 matrix and the

similarity is calculated by Euclidean metric. The FP features

of the three songs are plotted in Fig. 3.

3.3. Spectrum Histogram

Spectrum histogram (SH) is a two dimensional feature which

also characterizes the timbre of a music track. The advan-

tage of this feature is the distance can be calculated by Eu-

clidean metric, while the calculation of MFCC distance is

more complex. It counts the times of a loudness level in a

specific critical band being reached or exceeded. Finally we

get a 20× 50 matrix since there are 20 rows for critical-bands

and 50 columns for loudness resolution [5]. The SH features

of the three songs are plotted in Fig. 4.

4. EXPERIMENTS

In the experiments, we use the ISMIR2004 Audio Descrip-
tion Contest [16] data set for testing our proposed algorithm.

There are 729 training tracks and 729 test tracks, which are

classified to six genres. The distribution of different genres

in the training set is classical (320 tracks), electronic (115

track), jazz blues (26 tracks), metal punk (45 tracks), rock pop
(101 tracks) and world (122 tracks). The original tracks are

used instead of the segmented small pieces. The stereo audio

signals are reduced to mono and down-sampled from 44kHz

to 11kHz. We use the feature extraction and similarity mea-

surement methods presented in section 3 to evaluate the dis-

tances of music tracks. The parameters for feature extraction

algorithms are the same as the default setups in the music

analysis toolbox [6].

For comparison, we implemented the nearest neighbor

(NN) algorithm; the supervised regularized least-squares (RLS)

and the semi-supervised graph based regularized least-squares

(LapRLS). We randomly select labeled examples in each class

in the training set. If there are no enough tracks for the labeled

number in one class, we only use all tracks of this class. For

supervised methods NN and RLS, we use the labeled data to

train the classifier. For the semi-supervised method LapRLS,

we run it two times. First, we use the training set, including

both labeled and unlabeled data, to train the classifier (named

as LapRLS Train). Second, we use the whole data set, includ-

ing both training and test data, to train the classifier (named as

LapRLS All). For all the classifiers, we evaluate the accuracy

rates on the test set. The final results are show in Fig. 5. Each
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Fig. 5. SH Classification Results.

test accuracy plotted in the figures is an average of 50 random

trials. We can see that the results prove our discussion. For

the MFCC-EMD feature, the accuracy rate is more than 75%

when we labeled only 50 tracks of each class.

5. CONCLUSION

This paper proposes a semi-supervised way to deal with the

content based music genre classification problem. The ap-

proach uses both labeled and unlabeled data to train the clas-

sifier. This mechanism can both reduce the labeling work and

improve the accuracy rate for three typical timbre and rhythm

features.
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