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ABSTRACT

In this paper, we consider a two description coding scheme
based on a general frame synthesis operator. Through some
approximations of the original rate-distortion problem, the
design of the ef ciently encoded coef cients is formulated
as a convex optimization problem. We also show that there
exists a close link between the proposed coding strategy and
compressed sensing problems. Simulations results are pro-
vided to show the validity of our approach.

Index Terms— Image coding, signal reconstruction, wavelet
transforms, transform coding.

1. INTRODUCTION

Multiple Description Coding (MDC) is a useful technique for
lossy networks, that exploits the existing path diversity in or-
der to send several independently decodable streams instead
of a single one. This coding strategy gives the possibility of
recovering the source without involving retransmission (for
instance in low-delay applications, network congestion etc.).
The multiple streams, called descriptions, are obtained by
splitting the source information after having introduced some
redundancy. When channel losses occur or a whole path is
not operational, the source is decoded only from the correctly
received streams, with a reduced but acceptable quality of
reconstruction. Among the practical directions followed to
build MDC schemes which are thoroughly listed in [1], we
will be mainly interested in a frame-based one [2], thus tak-
ing advantage of the inherent redundancy of the transform.

In the literature, there may be several issues of interest
when designing MDC schemes, for instance ef cient han-
dling of redundancy in order to ful ll a rate-distortion trade-
off [3], [4], ef cient forming of descriptions in order to get
side-distortions as balanced as possible while being close to
the central distortion [5], ef cient reconstruction based on en-

coding constraints and so on. Here we present a complemen-
tary viewpoint inspired from the recent Compressed Sensing
(CS) theory (see for instance [6], [7]) which gives remark-
able results for analyzing signals having a sparse representa-
tion in some frame. These results basically state that such a
signal can be perfectly recovered from a reduced number of
arbitrary projections. This signal recovery problem can also
be found under the name of sparse approximation and it has
mainly been addressed by Matching Pursuit [8] or Basis Pur-
suit techniques [6]. Matching Pursuit has also been used in
a rst stage of generating multiple balanced descriptions (see
[9] and references therein) for still images, in a lossy network
scenario.

In our MDC framework we borrow from the CS eld the
idea that the encoder should determine a reduced number of
components of the image in a frame representation from the
observation of its pixel values. The choice of the compo-
nents is grounded on a rate-distortion formulation of the MDC
problem, which after some simpli cations is re-expressed as
a convex optimization problem. Then, we apply this approach
to a two-description scheme for the transmission of still im-
ages.

The paper is organized as follows. In Section 2, we dis-
cuss the two complementary viewpoints for designing an MDC
scheme from a frame representation. Then, in Section 3, we
present the adopted approach relying on a synthesis frame
paradigm and we formulate the considered rate-distortion prob-
lem. The proposed convex optimization algorithm is given in
Section 4 and Section 5 provides a simple example and con-
cludes the paper.

2. ANALYSIS VS SYNTHESIS FRAMES

We assume that the signal to be encoded belongs to a real
Hilbert space H endowed with an inner product 〈., .〉 and the
associated norm ‖.‖. We consider a two-description scheme
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based on two families of vectors (e1,k)k∈K1
and (e2,k)k∈K2

of
H, with K1 ⊆ N and K2 ⊆ N. The union of these two fami-
lies is assumed to form a frame of H. Consider the associated
decomposition operators: for all i ∈ {1, 2},

Li : H → �2(Ki)

x �→ (〈x, ei,k〉)k∈Ki
. (1)

Their adjoint operators are

L∗i : �2(Ki)→ H

(ξk)k∈Ki
�→

∑
k∈Ki

ξkei,k. (2)

Two different viewpoints can be adopted to design an MDC
scheme from these frame operators.

In the analysis frame paradigm, a signal x ∈ H is decom-
posed by the linear operators L1 and L2, as given before, so
as to provide two descriptions

ci = Lix, i ∈ {1, 2}, (3)

which are quantized and transmitted separately. At the de-
coder side, one of these descriptions or both may be available
and the problem is to reconstruct a signal x̂ as close as pos-
sible to x. In order to improve the quality of reconstruction,
the convex constraints induced by the quantization rules can
be addressed within a convex optimization approach [10, 11],
which leads to a nonlinear reconstruction.

In the synthesis frame paradigm, the operators L∗1 and L∗2
are used at the decoder side. Two sequences of quantized
values c1 and c2 corresponding to the two descriptions are
transmitted. The reconstructed signal at the central decoder is
then given by

x̂ = L∗1c1 + L∗2c2. (4)

Similarly, the i-th side decoder computes

x̂ = L̃∗i ci, i ∈ {1, 2}. (5)

where L̃∗i : �2(Ki) → H is a given reconstruction operator.
We see that one of the advantages of this approach is that
the decoders take a simple linear form. At the encoder, the
problem is however to generate the sequences c1 and c2 in
the best way in a rate-distortion sense, taking into account the
channel characteristics. The design of the encoding rule then
yields a nonlinear optimization problem which is formulated
in the next section.

3. SYNTHESIS FRAME APPROACH

3.1. Rate-distortion problem

Let R(ci), i ∈ {1, 2}, denote the number of bits required
to transmit the sequence of quantized values ci. We aim at
minimizing the global bitrate

Rglobal = R(c1) +R(c2) (6)

under a distortion constraint which is expressed as

D =α1,2‖x− L∗1c1 − L∗2c2‖
2

+α1‖x− L̃∗1c1‖
2 + α2‖x− L̃∗2c2‖

2 ≤ Dmax.
(7)

Hereabove, Dmax is the maximum distortion allowed whereas
α1,2, α1 and α2 are some positive weighting factors. Within
a probabilistic setting, one can choose α1,2 = PD1+D2

, αi =
PDi

, i ∈ {1, 2}, where PD1+D2
(resp. PDi

) is the proba-
bility that both descriptions are received (resp. only the i-th
description is received). Other considerations e.g. perceptual
quality can however be taken into account in the choice of the
constants α1,2, α1 and α2.

The determination of c1 and c2 minimizing (6) subject to
the constraint (7) is a dif cult global nonconvex optimization
problem. Note also that the upper bound Dmax should be
chosen large enough to guarantee the existence of a solution
to the optimization problem. We will now bring some sim-
pli cations to this problem so as to be able to solve it using
convex programming techniques.

3.2. Rate minimization

With little loss of generality for practical purposes, we will
subsequently assume that a nite number of frame coef -
cients is considered, that is K1 = {1, . . . , K1} and K2 =
{1, . . . , K2} (which implies that H is nite dimensional). In
addition, for all i ∈ {1, 2}, ci = (ci,k)1≤k≤Ki

is assumed to
be a vector of uniformly quantized values with a quantization
step q > 0. The vector ci can then be viewed as a realization
of a random vector Ci = (Ci,k)1≤k≤Ki

taking its values in
{. . . − 2q,−q, 0, q, 2q, . . .}Ki . Thus, the entropy of Ci,k is
given by

H(Ci,k) = −
∑
n∈Z

P (Ci,k = nq) log2

(
P (Ci,k = nq)

)
. (8)

Instead of minimizing the global bitrate, we propose to mini-
mize the entropy of the transmitted frame coef cients:

Hglobal =

K1∑
k=1

H(C1,k) +

K2∑
k=1

H(C2,k) (9)

which is known to provide a lower bound of Rglobal for mem-
oryless sources.

The coef cients ci,k can be viewed as the outputs of a
uniform quantizer driven with real-valued coef cients ci,k,
which are realizations of random variables Ci,k with proba-
bility density functions pi,k. For a ne enough quantization
step, it has been proven [12] that the following relation holds
between the discrete entropy of Ci,k and the differential en-
tropy of Ci,k, denoted by h(Ci,k):

H(Ci,k) ≈ h(Ci,k)− log2(q). (10)
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Recall that the differential entropy is given by

h(Ci,k) = −

∫
pi,k(ξ) log2

(
pi,k(ξ)

)
dξ

= −E{log2

(
pi,k(Ci,k)

)
}. (11)

Let Si,k denote the index set of coef cients in description i
having the same probability distribution as Ci,k. For example,
in a wavelet frame, this may correspond to a given subband.
Under i.i.d. or more general classical mixing conditions, the
expectation in (11) can be approximated by the sample esti-
mate:

h(Ci,k) ≈ −
1

Ni,k

∑
�∈Si,k

log2

(
pi,k(ci,�)

)
(12)

provided that Ni,k = cardSi,k is large enough.
Let us now adopt a generalized Gaussian model for the

probability distribution of the (centered) random variable Ci,k.
This class of distributions was indeed shown to be quite ex-
ible for modeling coef cients of sparse linear representations
e.g. wavelet ones both for compression and denoising appli-
cations [13]. We have then

∀ξ ∈ R, pi,k(ξ) =
βi,kω

1/βi,k

i,k

2Γ(1/βi,k)
e−ωi,k|ξ|

βi,k (13)

where ωi,k > 0, βi,k ≥ 1 and Γ is the gamma function. By
injecting this expression in (12), we get

h(Ci,k) ≈
ωi,k

Ni,k ln(2)

∑
�∈Si,k

|ci,�|
βi,k − log2

(βi,kω
1/βi,k

i,k

2Γ(1/βi,k)

)
.

(14)
From (9), we see that Hglobal is (up to a ln(2) dividing factor
and an additive constant) approximately equal to

J(c1, c2) =

K1∑
k=1

ω1,k|c1,k|
β1,k +

K2∑
k=1

ω2,k|c2,k|
β2,k . (15)

This suggests that J is an appropriate criterion to be mini-
mized to control the bitrate.

3.3. Distortion bound

Let εi = (εi,k)1≤k≤Ki
, i ∈ {1, 2}, denote the vector of quan-

tization errors de ned by ci = ci + εi. The distortion con-
straint (7) can be rewritten as:

D = α1,2‖x− L∗1(c1 + ε1)− L∗2(c2 + ε2)‖
2

+ α1‖x− L̃∗1(c1 + ε1)‖
2 + α2‖x− L̃∗2(c2 + ε2)‖

2 ≤ Dmax.

(16)

Let us now focus on the quadratic term corresponding to the
distortion at the side decoder i. We have

‖x− L̃∗i (ci + εi)‖
2

=‖x− L̃∗i ci‖
2 + 2〈x− L̃∗i ci, L̃

∗
i εi〉+ ‖L̃

∗
i εi‖

2

=‖x− L̃∗i ci‖
2 + 2〈L̃i(x− L̃∗i ci), εi〉+ ‖L̃

∗
i εi‖

2. (17)

We can consider that εi and ζi = L̃i(x−L̃∗i ci) = (ζi,k)1≤k≤Ki

are realizations of random vectors Ei = (Ei,k)1≤k≤Ki
and

Zi = (Zi,k)1≤k≤Ki
. For a ne enough quantization step,

the quantization errors Ei,k can be assumed to be zero-mean,
i.i.d. and independent of all the other random variables, in
particular Zi. We have then E{Ei,kZi,k} = 0. The law of
large numbers can be invoked to assert that

K−1
i

Ki∑
k=1

Ei,kZi,k
P
−→ 0 (18)

as Ki → ∞. This means that, when Ki is large, the in-
ner product term 〈ζi, εi〉 =

∑Ki

k=1 ζi,kεi,k can be neglected in
(17). By exploiting the assumption of independence between
E1 and E2, similar arguments can be used to approximate the

rst quadratic term in (16) corresponding to the distortion at
the central decoder. Thus, we obtain D ≈ G(c1, c2) + Dε,
where

G(c1, c2) =α1,2‖x− L∗1c1 − L∗2c2‖
2

+ α1‖x− L̃∗1c1‖
2 + α2‖x− L̃∗2c2‖

2 (19)

Dε =α1,2‖L
∗
1ε1 + L∗2ε2‖

2 + α1‖L̃
∗
1ε1‖

2 + α2‖L̃
∗
2ε2‖

2.
(20)

The latter term can be evaluated from the second-order statis-
tics of the quantization noise.

In summary, the original rate-distortion problem can be
recast as: Find c1 and c2 minimizing J(c1, c2) subject to the
quadratic inequality constraint

G(c1, c2) ≤ Gmax = Dmax −Dε. (21)

At this point, the strong connection between the proposed ap-
proach and the compressed sensing framework can be more
easily understood. Indeed, when for all k, β1,k = β2,k = 1
and ω1,k = ω2,k = 1, the optimization problem is quite simi-
lar to the one addressed in compressed sensing in the presence
of noise [6].

4. CONVEX OPTIMIZATION

By using a Lagrangian formulation of the convex optimiza-
tion problem stated at the end of the previous section, we
come up to the following saddle point problem:

max
μ≥0

min
c1,c2

(
J(c1, c2) + μ(G(c1, c2)−Gmax)

)
. (22)

The most challenging part of the optimization process is the
inner minimization. Generally, one must resort to iterative al-
gorithms to solve this problem. We propose here to use the
ef cient algorithm described in [14], which is itself an exten-
sion of the methods in [15]. Starting from initial coef cients
(c

(0)
1 , c

(0)
2 ), the algorithm generates a sequence (c(n)

1 , c
(n)
2 )n≥1
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converging to a solution of the optimization problem. At it-
eration n, we set c

(n)
i = (c

(n)
i,k )1≤k≤Ki

, i ∈ {1, 2}, and we
compute, for all k ∈ {1, . . . , Ki},

π
(n)
i,k = prox

γωi,k| . |
βi,k (c

(n)
i,k − γg

(n)
i,k ) (23)

c
(n+1)
i,k = c

(n)
i,k + λ(π

(n)
i,k − c

(n)
i,k ) (24)

where γ ∈ [0, γmax] is the algorithm step-size, λ ∈ (0, 1] is
a relaxation parameter, prox

γωi,k|.|
βi,k is the proximity oper-

ator of the function γωi,k| . |
βi,k and

(g
(n)
i,k )1≤k≤Ki

= 2
(
α1,2Li(L

∗
i c

(n)
i + L∗3−ic

(n)
3−i − x)

+ αiL̃i(L̃
∗
i c

(n)
i − x)

)
. (25)

We recall that the proximity operator of a convex function
f : R → R is proxf : u �→ argminv

1
2 (v − u)2 + f(v).

For the considered power functions, the proximity operator
can be calculated explicitly for some values of the exponent
βi,k [14], otherwise it can be easily computed numerically.

5. EXAMPLE AND CONCLUSION

We consider a simple example of a two-description scheme
where, inspired from the JPEG2000 standard, L∗1 is the re-
construction from a 9-7 biorthogonal wavelet basis and L∗2
is also the reconstruction from the same wavelet basis func-
tions but shifted by 1 pixel in each spatial direction. In this
case, a natural choice for the side decoders is L̃∗i = 2L∗i ,
i ∈ {1, 2}. A 3-resolution level dyadic lter bank structure is
applied for the MDC encoding of the 512×512 standard Lena
image. The weighting factors in the distortion constraint have
been chosen here as α1,2 = 0.8, α1 = α2 = 0.1. The frame
coef cients are synthesized by the optimization approach de-
scribed in the previous section where the parameters of the
generalized Gaussian model have been estimated by an iter-
ative Maximum Likelihood method. The quantization step q
for each rate has been optimized and the JPEG2000 algorithm
has been employed to encode the two quantized descriptions.
Fig. 1 shows the evolution of the PSNR w.r.t. the global
bitrate for the central and side decoders. We provide for com-
parison, the results corresponding to the direct application of
the JPEG2000 encoder at half the bitrate i.e. at the same bi-
trate as a description since each one is a whole basis repre-
sentation. As expected, the proposed scheme provides better
results for the central decoder while showing a good perfor-
mance for the two side decoders. It is worth noticing that
better results could be expected by using more sophisticated
frames.
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