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ABSTRACT
The increasing diversity of end-user devices and networks allow

different users to receive and view images and video at different res-
olutions and rates. Scalable coding methods allow streaming media
systems to easily adapt media by selecting packets according to sched-
ules that re ect their importance. Traditional scheduling algorithms
are based on a single distortion measure such as mean-squared error
relative to the original high resolution image. In this paper, we present
a new approach of using Multiple Distortion Measures to schedule
packets in a manner that explicitly accounts for a range of rates and
resolutions. We show the effectiveness of this approach and examine a
common scenario where multiple distortion measures are helpful. We
present an algorithm that generates embedded JPEG2000 schedules
and achieves 1 to 4 dB improvement over conventional approaches.

Index Terms— Multiple distortion measures, scalable streaming,
embedded packet schedules, scalable video coding, JPEG2000

1. INTRODUCTION

Users are viewing media content on an increasing variety of devices
such as cell phones, PDAs, TVs, laptops, and desktop computers.
Since these devices have different display resolutions and network
bandwidths, it is desirable for streaming media systems to be able to
quickly adapt the transmission of the coded media stream in a man-
ner that maximizes the quality for each user. Scalable coding methods
such as JPEG2000 allow quick adaptation by simply selecting media
packets according to schedules that re ect their importance. Resolu-
tion can be reduced by selecting low resolution packets and rate can be
adapted by scheduling packets based on rate-distortion performance.

Streaming media systems typically use scheduling algorithms that
are based on minimizing a single distortion measure, such as mean-
squared error with respect to the original high resolution image. The
problem with this approach is that it neglects the needs of many users,
such as low resolution users. For example, a scheduling algorithm
optimized for high resolution users may send high frequency edge in-
formation at low rates, but these edges may not be visible to low reso-
lution users. Since low resolution users are more likely to be accessing
the media at the lower rates, it is desirable to have a scheduling algo-
rithm that re ects these needs.

In this paper, we present a new approach of using Multiple Dis-
tortion Measures to consider the needs of a variety of users. With this
approach, we can consider the relative importance of media packets for
each user and develop scheduling algorithms that explicitly account for
a variety of rate and resolution requirements. Speci cally, we develop
an algorithm that generates an embedded packet schedule using multi-
ple distortion measures. We show that our algorithm outperforms the
standard approach of using a single distortion measure.

This paper proceeds as follows. In Section 2, we present our prob-
lem formulation and review an embedded scheduling algorithm for a
single distortion measure [1]. Section 3 formally introduces the idea of
multiple distortion measures and demonstrates its importance. In Sec-
tion 4, we study the properties of the schedules optimized for different

distortion measures. In Section 5, we present an algorithm that gener-
ates an embedded schedule based on multiple distortion measures. We
develop a framework to evaluate the performance of these scheduling
algorithms and show the performance of our algorithm in this context.

2. PROBLEM FORMULATION AND BACKGROUND

We consider a streaming media system that encodes content once and
adaptively streams it to a number of users. One such system is shown
in Fig. 1, where a coded media stream is sent to a relay node that adap-
tively transcodes the stream for each receiver according to its display
capabilities and network conditions. When a scalable coder such as
JPEG2000 is used, the relay’s transcoding operation is simply packet
selection, and this operation can be further simpli ed to a single stream
truncation operation by using embedded schedules. Embedded sched-
ules are schedules that incrementally add packets–all packets for rate
R1 will also be included for rate R2 > R1. If all users have the same
viewing capabilities, an optimal high resolution embedded schedule
can be generated as in [1, 2].
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Fig. 1. Embedded schedules allow a mid-network transcoder to adapt
media for different users with a stream truncation operation.

Our goal is to generate embedded schedules that minimize the
distortion at various rates and resolutions. In this work, we measure
distortion using mean-squared error (MSE). Due to coding dependen-
cies, distortions across multiple packets are not strictly additive, as
some packets can only be decoded with the inclusion of other pack-
ets. We map this dependence to precedence constraints, and note that
JPEG2000 packets have precedence constraints across layers. There-
fore, a JPEG2000 packet i is de ned by its size, si, its multiple distor-
tion values, pij for multiple j, and its precedence constraints of which
packets must be included before it. We calculate distortion values, and
subsequent pro t values pij , by incrementally dropping the JPEG2000
packets and calculating the resulting distortion via our multiple distor-
tion metrics. We use distortion and pro t interchangeably–the distor-
tion value is the distortion incurred with packet exclusion and the pro t
value is the pro t gained with packet inclusion. These are equivalent.

The idea of viewing scalable media with different types of displays
has been examined in the past. Temporal and spatial adaptation of scal-
able video is examined in [3]. In this work, performance metrics were
user/classi cation-based upon subjective tests, whereas our work uses
the standard measure of MSE. Spatial resolution reduction with video
transcoding is studied in [4]. They focus on downsampling method-
ologies and use the original, high resolution image as the benchmark.
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In our work, we use multiple benchmarks and distortion measures.

2.1. Fused-Greedy Algorithm

We brie y review the fused-greedy algorithm presented in [1]. This
algorithm gives the optimal embedded schedule for a single distortion
measure. It leverages the idea that a packet’s importance can be mea-
sured by its pro t-to-size ratio. Because of the dependencies among
JPEG2000 packets, some packets must be fused together to ensure that
the precedence constraints are not violated. A violation occurs when
the pro t-to-size ratio of packet i is larger than that of packet j which
must precede it. This causes a packet ordering of i then j, which vio-
lates the precedence constraints. Fusing the packets together prevents
this violation from occurring.

The fused-greedy algorithm rst computes the pro t-to-size ratio
of each packet, then fuses together the packets that violate a prece-
dence constraint. Finally, the packet schedule is obtained by arranging
the packets in decreasing order of the fused pro t-to-size ratios. Let
pi, si, and ri be the pro t, size, and pro t-to-size ratio of packet i.
FUSED-GREEDY(p, s)
1 ri = pi

si

2 Check precedence constraints
3 if Violation between packet i and i + 1
4 then Fuse packets:
5 ri =

pi,i+1
si,i+1

=
pi+pi+1
si+si+1

6 ri+1 = 0
7 Sort packets by ri

3. MULTIPLE DISTORTION MEASURES

In current media systems, distortion is typically measured against the
original high resolution image. However, a low resolution viewer is
most concerned with distortion compared to the low resolution im-
age. For this reason, we propose using Multiple Distortion Measures
to measure performance relative to each target device.

To calculate the distortion measures, we evaluate packet impor-
tance compared to a benchmark image, which may be the original
image, as done conventionally, as well as the original image down-
sampled to different resolutions. To do this, we incrementally drop
packets, decode and possibly downsample the image, and calculate
the resulting MSE relative to the appropriate benchmark image. Thus,
each packet has multiple distortion values associated with it: one for
each resolution. By applying the fused-greedy algorithm to the high
resolution metric, we get an embedded high-optimized schedule, as in
the traditional case; by applying it to the low resolution metric, we get
an embedded low-optimized schedule.

Many different downsampling methods exist, and it is important
to note that our methodology applies to any downsampling method.
Speci cally, once the distortion values are computed, the rest of the
analysis follows identically. In our experiments that follow, we exam-
ine the following two linear methods for 2×2 downsampling: (1) basic
2 × 2-pixel averaging, and (2) the 13-tap downsampling lter devel-
oped in the Scalable Video Coding (SVC) effort [5] applied separably,
denoted here as “SVC”.

3.1. Packet scheduling for low resolution viewing

Scalable coders allow low resolution images to be constructed by de-
coding only the low resolution packets or equivalently by downsam-
pling a full size decoded image with the low resolution wavelet lter.
However, we cannot guarantee that all devices will downsample with
the wavelet lter. Thus, in this section we examine the packet selec-
tions and embedded schedules that result when using the fused-greedy
algorithm for the two downsampling methods described above.

Table 1 summarizes comparisons of PSNRs evaluated for low res-
olution viewing for a variety of standard test images. We compare the
PSNRs when the image is reconstructed using all of the low resolu-
tion packets to when the image is reconstructed using packets selected
from the embedded low-optimized schedules to match the same rate
constraint. Note that the packets are selected from all the packets, not
just the low resolution packets. It is particularly surprising to see the
gain that can be achieved by considering the high resolution packets.
By allowing the selection from all packets, one can get 1-2dB gains
when using pixel-averaging. The gains are smaller when using the
SVC downsampling lter. However, we will see that the SVC down-
sampling lter gives greater gains in Fig. 2.

Image Rate PSNR of LowRes pkts PSNR of opt pkts
(bytes) Pix-Avg SVC Pix-Avg SVC

Actor 20386 30.52 36.43 32.72 36.70
Aerial 16344 32.22 37.97 34.46 38.74
Barboo 16119 28.85 34.23 29.81 34.28
Bike 17583 28.10 34.24 31.36 35.27
Cafe 17270 25.38 31.09 26.76 31.24
Woman 16983 36.21 41.10 38.71 41.47

Table 1. Comparison of PSNR for 6 images when including all of the
low resolution packets as compared to selecting the optimal packets at
the same rate. Downsampling is done using pixel-averaging and the
SVC downsampling lter.

3.2. Comparison of Low- and High-Optimized Schedules

Typically, embedded schedules are optimized for high resolution view-
ing even at low rates, where the viewer is likely to have a low resolu-
tion display. We can see in Fig. 2 the PSNR versus Rate curves for
embedded schedules generated using the fused-greedy algorithm, op-
timized at low and high resolutions. The solid lines correspond to the
schedules optimized and evaluated at the low and high resolutions. The
dotted curves correspond to the schedules optimized at low and mea-
sured at high resolution and optimized at high, measured at low. When
using pixel-averaging, there is up to a 2dB gain in the low resolution
PSNR when the packet selection is optimized for low resolution view-
ing rather than high resolution viewing. When using the SVC lter,
the gains that can be achieved are up to 4dB. One reason for the drop
in PSNR is when the image is optimized for high resolution viewing,
edges are important, and packets corresponding to edges will be trans-
mitted. However, once the image is reduced in size, these edges are
no longer important. Therefore, instead of transmitting information to
improve the low resolution image quality, bytes have been wasted on
packets that cannot be seen on a low resolution display. This is a key
factor as to why multiple distortion measures are necessary. Blindly
optimizing for high resolution viewing or simply selecting low resolu-
tion packets can lead to a drop in performance of multiple dB.
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Fig. 2. PSNR vs Rate (in bytes) for schedules optimized for low and
high resolutions measured at both low and high metrics. Downsam-
pling by pixel-averaging (left) and SVC lter (right)
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4. PROPERTIES OF SCHEDULES AT DIFFERENT
DISTORTION MEASURES

In this section we examine some properties of schedules optimized for
low resolution viewing compared to those optimized for high resolu-
tion viewing. For the sake of space, we present the results for a single
image, Cafe; however, the trends are similar across multiple images.

Our goal is to nd embedded schedules given multiple distortion
measures. Given two schedules, S1 and S2, we de ne their correla-
tion as the fraction of packets common in both schedules, i.e. |S1∩S2|

|S1| .
Therefore, embedded schedules have correlation equal to 1. Schedules
that contains very different packets will have correlation close to 0. In
Fig. 3, we see correlation is fairly varied between schedules optimized
at different resolutions. At medium rates, the correlation is very low,
which is why there are the PSNR gaps in Fig. 2 around the same rates.
At high rates, most packets are included in the schedule, so correla-
tion is close to 1. At low rates, the same few packets will create the
foundation for the image, regardless of the viewing resolution, so cor-
relation equals 1. When using the SVC lter, the correlation is much
lower. These results reinforce the notion that packet selection at each
distortion metric is very different, and optimizing for the high reso-
lution measure does not equate to the selection of all low resolution
packets.
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Fig. 3. Correlation between low and high resolution schedules. Down-
sampling by pixel-averaging (left) and SVC lter (right)

In Fig. 4, we compare the packet selection between schedules. We
sort packets, so packet 1 is the rst packet included for the low res-
olution schedule. The red line corresponds to the rate at which each
packet enters the low resolution schedule. In gray, we plot the en-
try of the same packets into the high resolution schedule. In general,
the more important a packet, the lower the entry rate; therefore, we
can compare the varied packet importance of the two distortion met-
rics. The disparity between the two schedules is very large. In fact,
a packet which is not important for the low resolution image and is
included only at very high rates can be quite important for the high
resolution image. Likewise, packets that are important in the low res-
olution image could be relatively unimportant at high resolution. This
disparity between pro t values causes the low correlations in Fig. 3
and the drop in PSNR in Fig. 2. There seems to be a larger discrep-
ancy between schedules when downsampling is done using the SVC

lter, which can justify the larger gaps in the PSNR curves.
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Fig. 4. Packet entry of the embedded schedule optimized at low res-
olution (red) and at high resolution (gray). Downsampling by pixel-
averaging (left) and SVC lter (right).

5. SCHEDULING GIVEN A SWITCHING RATE

In this section we look at a special case of users with multiple distor-
tion metrics. We present a framework to evaluate schedules for this
scenario and present an algorithm to generate high-performance em-
bedded schedules.

At a given rate, there may be multiple users who wish to view
the content at low, medium, and high resolution. At other rates, for
instance low rates, users may only view the content on low resolu-
tion displays. We focus on the speci c problem of a xed switching
rate, Rs, where the distortion metric switches from low to high res-
olution. For all schedules with R ≤ Rs, MSE is measured against
the low resolution image whereas for schedules with R > Rs, MSE
is measured against the high resolution image. Because packets have
different importance at low and high resolutions, optimizing the sched-
ule at low resolution for rates less than Rs and then switching to high
resolution will give suboptimal performance and multiple distortion
measures must be accounted for. We also assume that the probability
of a user’s channel having rate-constraint R is uniformly distributed
from 0 to Rmax, where Rmax is the total size of the coded image.

If Rs = Rmax, all distortions are measured by the low resolution
distortion metric and the schedule is given by the fused-greedy algo-
rithm on the low resolution pro t values. Likewise, if Rs = 0, the
schedule is determined by the fused-greedy algorithm on the high res-
olution pro t values. Given these optimal schedules and Rs, we want
to nd an algorithm to generate schedules which switch between them.

5.1. Integral Distortion Performance Metric

Given a switching rate, Rs, we would like to nd the schedule that
minimizes distortion over all rates and users. In order to evaluate and
compare the performance of a schedule, we propose the Integral Dis-
tortion, DI(S), performance metric. We de ne this metric as the sum
of the distortion of the schedule at each rate.

DI(S) =

Rs�

R=0

dL(S, R) +

Rmax�

R=Rs

dH(S, R) (1)

where S is the schedule, Rmax is the total number of bytes in the im-
age, dL(S, R) is the distortion measured at low resolution for sched-
ule S evaluated at rate R, and dH(S, R) is the distortion measured at
high resolution for schedule S evaluated at rate R. Because distor-
tion at each rate is weighted equally, DI (S)

Rmax
is the expected distortion

for uniformly distributed access rates. Therefore, minimizing DI is
equivalent to minimizing the expected distortion. Because we wish to
minimize distortion, high-performing schedules will have very low In-
tegral Distortion. This measure gives us a systematic way to compare
different schedules. If DI(S1) < DI(S2), then we can say that S1

is a better schedule than S2. This approach can be straightforwardly
extended to more resolutions and non-uniform probability of viewing.

5.2. Changing Rate

Now that we have a performance metric to evaluate schedules, we in-
troduce a scheduling algorithm to generate embedded schedules. This
algorithm utilizes the fused-greedy algorithm and a changing rate, Rc.

One approach is to generate schedules by starting with the low
resolution schedule and then when the distortion metric changes at Rs,
the remaining packets should be added into the schedule according to
the high resolution schedule. In this case, the changing rate would be
equal to the switching rate, Rc = Rs. We examine this hypothesis
in this section. We de ne Rc as the rate at which we change from
low resolution to high resolution prioritization for packet scheduling,
i.e., for R < Rc we use the solution from the low resolution fused-
greedy solution, and for R > Rc, we ll using the high resolution
fused-greedy schedule. The scheduling algorithm is:
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CHANGING-RATE(pL, pH , s)
1 SL = FUSED-GREEDY(pL, s)
2 SH = FUSED-GREEDY(pH , s)
3 Fill S according to SL until S has Rc bytes
4 Fill remaining packets into S according to SH

In Fig. 5, we can see the PSNR versus Rate curves as we sweep
over various values of Rc for a xed switching rate, Rs. As we de-
crease Rc and switch to the high resolution schedule at earlier rates,
the performance of the low resolution schedules takes a hit. However,
the performance of the high resolution schedules improves.
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Fig. 5. PSNR vs. Rate for varying values of the changing rate, Rc.
Rs = 33000. Downsampling using pixel-averaging.

Sweeping over different values of Rc vastly affects the integral
distortion, as seen in Fig. 6. Empirically, we have seen for various
switching rates, there is a unique Rc that corresponds to the minimum
integral distortion. Certainly, the optimal changing rate, R∗

c , will de-
pend on the switching rate, Rs, as well as the image/packet properties.
However, given packet pro ts and Rs, we can search over Rc to nd
the optimal changing rate which minimizes the integral distortion.
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Fig. 6. Integral Distortion vs. changing rate with Rs = 30000 (left)
and Rs = 40000 (right). Downsampling by pixel-averaging.

5.3. Performance Results

In this section we present results for the performance of the algorithm
presented in Section 5.2. We compare the performance to the standard
policy which generates schedules using the fused-greedy algorithm on
the high resolution pro t values. We also compare to the fused-greedy
algorithm on the low resolution pro t values. As a more multiple-
distortion-aware policy, we also examine the case of xing Rc = Rs

where no optimization is done to nd the optimal changing rate R∗
c .

All results shown are for actual decoded images; however, the optimal
R∗

c is found by assuming an additive model, with precedence con-
straints, for distortions and minimizing integral distortion values.

In Fig. 7, we can see that the high resolution schedule performs
very well if the switching rate is very low because there is little differ-
ence between the high and low schedules at low rates and at most rates,
high resolution viewing is desired. However, as Rs increases, the per-
formance drops because the high schedule ignores the low resolution
pro ts. Likewise, the low resolution schedule performs well for high
Rs, but very poorly for low Rs. Setting Rc = Rs can outperform
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Fig. 7. Integral Distortion vs. switching rate for various algorithms.
Downsampling by pixel-averaging (left) and SVC lter (right).
the low and high resolution schedules because it does switch between
the low and high distortion metrics. However, we can see that if we
optimize Rc, we can achieve even higher performance.

In Fig. 8, we compare the different policies for a xed switching
rate, Rs = 35000. The Rc = Rs policy performs quite similar to the
low optimized schedule because it switches much too late, though its
performance improves at high rates. Our policy clearly outperforms
the others. A very slight drop in PSNR for the high optimal schedule
occurs just after the switching rate. However, at rates R < Rs, the R∗

c

policy performs nearly 2dB better than the standard high optimized
schedule and nearly as well as the low optimized schedule. When
downsampling using the SVC lter, we can achieve over 3dB gains.
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Fig. 8. PSNR versus rate with Rs = 35000 for various algorithms.
Downsampling by pixel-averaging (left) and SVC lter (right).

6. CONCLUSION

In this paper we have proposed the use of multiple distortion measures
to capture the need of users with varying display capabilities. By cap-
turing the viewing needs of all users, quality of service can vastly be
improved. We examined a scenario of using low resolution distortion
measures at low rates and switching to high resolution distortion mea-
sures at high rates. We presented a framework to evaluate scheduling
algorithms for JPEG2000 images with multiple distortion measures.
Using this framework, we show our new scheduling policy outper-
forms the standard approaches which use single distortion measures.
When comparing PSNR performance to a conventional scheduling al-
gorithm, we found that our algorithm can achieve gains over 3dB.
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