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ABSTRACT

We discuss automatic music transcription from audio input
to music score by integrating our probabilistic approaches to
multipitch spectral analysis, rhythm recognition and tempo
estimation. In spectral analysis, acoustic energies in spec-
trogram are clustered into acoustic objects (i.e., music notes)
with our method called Harmonic-Temporal-structured Clus-
tering (HTC) utilizing EM algorithm over a structured Gaus-
sian mixture with constraints of harmonic structure and tem-
poral smoothness. After onset and offset timings are found
from separated energies of music notes through note power
envelope modeling to obtain the piano-roll representation, the
rhythm and tempo are simultaneously recognized and esti-
mated in terms of maximum posterior probability given a prob-
abilistic note duration models with HMM (Hidden Markov
Model) and probabilistic “rhythm vocabulary.” Variable tempo
is also modeled by a smooth analytic curve. Rhythm recog-
nition and tempo estimation is alternately performed to itera-
tively maximize the joint posterior probability. Experimental
results are also shown.

Index Terms— music transcription, harmonic-temporal-
structured clustering, rhythm estimation, HMM

1. INTRODUCTION

Automatic music transcription has been one of ultimate goals
of music information processing that converts audio signal of
performed music into symbolic representation of music score
similarly as in automatic speech recognition which converts
speech into text. It has a wide range of potential applications
including score display/printing, music analysis, input for au-
tomatic arrangement, music manipulation (e.g., changing the
timbre) and music information retrieval (MIR) both in build-
ing music database and in transcribing the query input.
In this paper, we focus on retrieving music notes in poly-

phonic music audio signals from a single instrument such as
piano, leaving out the rest of diverse problems related to mu-
sic transcription including key signature, measure, music ex-
pressions (e.g., forte, piano), articulations (e.g., staccato, mar-
cato), tempo (e.g., allegro, largo), tempo changes (e.g., ritar-
dando, accelerando), style (e.g., a la marcia) and many other
constituents of music score.

Musical
Score

Performance
(MIDI)

Audio
Signal

Playing Output

Signal 
Processing

Automatic 
Transcription

- 3 0 0 0

- 2 0 0 0

- 1 0 0 0

 0

 1 0 0 0

 2 0 0 0

 3 0 0 0

 0  0 . 2  0 . 4  0 . 6  0 . 8  1

 2 0

 3 0

 4 0

 5 0

 6 0

 7 0

 8 0

 9 0

 1 0 0

 1 1 0

- 0 . 5  0  0 . 5  1  1 . 5  2  2 . 5  3  3 . 5  4  4 . 5

p
i

t
c

h
(

M
I

D
I

 
n

o
t

e
 

n
u

m
b

e
r

)

t i m e [ s ]

Fig. 1. Two stages for music transcription from audio signals

Music transcription can be divided into two subproblems
as shown in Fig.1, i.e., signal processing to convert audio
signal into piano-roll representation (nearly equivalent to the
MIDI format) and automatic transcription to convert the piano-
roll representation into music score.
The rst stage is multipitch analysis and onset detection

from audio signals, i.e., conversion of music audio signals
into music performance data similar as MIDI (Musical Instru-
ment Digital Interface) containing the pitch and onset time
of each sound event. Most of previous works on multip-
itch estimation such as predominant F0 estimation method
[4], PreFEst [1], Specmurt analysis [2] and so forth start by
dealing with pitch extraction at each short-time frame using
frequency-domain models and then try to nd smooth pitch
contours by interpolating or extrapolating the pitch features
based on time evolution models. Contrary to such a strategy,
Harmonic-Temporal structured Clustering (HTC) [9], that will
be used as a front-end of the proposed method in this paper,
tries to estimate simultaneously the spectral structure in both
the time and frequency directions. Onset detection of each
sound event is another problem to solve, and some methods
use hierarchical approach [5] and Markov Chain Monte Carlo
method [6].
The second stage is the rhythm and tempo estimation from

estimated onset timings. To realize this stage, it can be ef-
fective the approach estimating rhythm pattern from MIDI or
piano-roll data. Many methods for rhythm and tempo estima-
tion that have been so far reported are based on a rule-based
AI approach or graphical model (for example, see [6, 7]). In
our previous work described in [10], we dealt with rhythm and
tempo estimation as a simultaneous problem, whereas these
previous methods treat them separately.
We propose in this paper a method for automatic music
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transcription from audio signals to music score. The proposed
method is an integration of the HTC multipitch estimation
method [9] followed by the onset time reestimation, and the
rhythm and tempo estimation method using HMM [10].

2. AUTOMATIC MUSIC TRANSCRIPTION

2.1. A Probabilistic Approach
Automatic transcription from audio signals can be considered
as an inverse problem to estimate the source music score from
the audio signal of performed music. In this paper, we focus
on polyphonic sound from a single instrument such as piano,
onset rhythm, and tempo curve as mentioned in the previous
section. In this situation, given the audio spectrogram W
of the input signal, maximum a posteriori estimation of the
source score S consisting of note number U , onset rhythm
Q, and tempoR is represented by the following probabilistic
model:
argmax

S
P (S|W ) = argmax

U ,Q,R
P (U ,Q,R|W )

= argmax
U ,Q,R

∫
P (Q,R|X)P (X ,U |Θ,W )P (Θ|W )dΘdX

where X denotes the onset time data and Θ represents the
set of the acoustic object parameters in HTC as intermediate
parameters. To avoid the integral calculation over all possible
ranges of intermediate parameters in the above equation this
time, we adopt the following approximation in this paper:

P (Θ|W ) ≈ δ(Θ− Θ̂(W ))

P (X ,U |Θ,W ) ≈ δ(X − X̂(Θ,W ))δ(U − Û(Θ)).

where δ(·) denotes Dirac’s delta function to yield the follow-
ing approximation without using integration:

argmax
S

P (S|W ) ≈ argmax
Q,R

P (Q,R|X̂(Θ̂,W ), Θ̂(W )). (1)

2.2. Proposed Approach with a Multi-Step Process

By the approximated transcription model in Eq.(1), the auto-
matic music transcription is realized by a multi-step process
is shown in Fig.2 and described below:
(1) Calculate the spectrogram W (x, t) from audio signal

f(t) by wavelet transform,
(2) Estimate the acoustic object parameter Θ and obtain

power envelope Qn(t) at each pitch using HTC,
(3) Estimate onset time dataset X at each acoustic object

by the method proposed in following section
(4) Estimate onset rhythm pattern Q and tempo curve R

by HMM-based rhythm and tempo estimation,
(5) Generate music score S from derived pitch and rhythm

patterns.

3. PROPOSED PROBABILISTIC APPROACH

3.1. Decomposition of Spectral Energy using HTC
Wewill describe here in brief the multipitch estimation method,
HTC [9]. Let the wavelet power spectrum of a music acous-
tic signal beW (x, t), where x is log-frequency and t is time.
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Fig. 2. Our proposed approach to automatic music transcription

The problem is to approximate it as well as possible as the
sum of K parametric source models qk(x, t;Θ), where Θ is
the set of model parameters, modeling the power spectrum of
K “objects” each with a at pitch contour μk.
As described in [9], these source models are expressed

as a structured Gaussian mixture model with constraints on
the characteristics of the kernel distributions: supposing that
there is harmonicity withN partials modeled in the frequency
direction, and that the power envelope is described using Y
kernel functions in the time direction, we can write each source
model as

qk(x, t;Θ) =
N∑

n=1

Y −1∑
y=0

Sk,n,y(x, t;Θ), (2)

with kernel densities Sk,n,y(x, t;Θ) which are supposed to
have the following shape:

Sk,n,y(x, t;Θ) � wkvk,nuk,n,y

2πσkφk
e
− (x−μk−logn)2

2σ2
k

− (t−τk−yφk)
2

2φ2
k

where the parameters wk, vk,n and uk,n,y are normalized to
unity. τk is supposed to correspond to the onset time, vk,n

and uk,n,y the shapes of the spectral envelope and the power
envelope of the kth source, respectively. A graphical rep-
resentation of a HTC source model qk(x, t;Θ) is shown in
Fig. 3. HTC method iteratively searches for the optimal pa-
rameter set Θ (μk, τk, φk, ψk, vk,n and uk,y) that mini-
mizes the sum over k of the KL-divergence between the kth
source model qk(x, t;Θ) and the corresponding spectral clus-
termk(x, t)W (x, t):

J =
X
k

∫∫
mk(x, t)W (x, t) log

mk(x, t)W (x, t)

qk(x, t)
dxdt.

mk(x, t) is a spectral masking function, that we also want to
estimate along with Θ. It is shown in [9] that minimizing J
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Fig. 3. An acoustic object by 2-d GMM in HTC

iteratively with respect to mk(x, t) and Θ amounts to min-
imizing the KL divergence between the whole spectrogram
W (x, t) and

∑
k qk(x, t;Θ). It is also shown that minimiz-

ing the KL divergence between W (x, t) and
∑

k qk(x, t;Θ)
could be understood as maximizing the likelihood de ned as
the joint distribution of multinomial-like distributions and the
problem can then be considered as a statistical maximum like-
lihood estimation. This leads us to introduce prior distribu-
tions for the parameters we wish to enforce constraints on. We
will use here a Dirichlet prior distribution forP (vk,1, · · · , vk,N )
and P (uk,0, · · · , uk,Y −1) whose maxima are taken when the
spectral and power envelopes of the source model have par-
ticular shapes. These prior distributions are in particular very
helpful for avoiding over tting the source models toW (x, t).
Letting m̂k(x, t) be the optimal spectral masking function

and Θ̂ be the optimal model parameters estimated through
HTC method, the spectral portion corresponding to the kth
source is, according to [9], given by:

q̃k(x, t; bΘ) = m̂k(x, t)W (x, t) =
qk(x, t; bΘ)P
k qk(x, t;

bΘ)W (x, t). (3)
Thus, we obtain the power envelope of each of sound compo-
nent of different fundamental frequencies.

3.2. Reestimation of Onsets
In order to have the following rhythm estimation work well,
the onset time of each note X needs to be estimated as pre-
cisely as possible. Although τk in the HTC source model has
been roughly considered as an onset time estimate, modeling
the power envelope with GMM does not necessarily give suf-
ciently precise onset time of each note (though it should be
emphasized that such a modeling has been advantageous in
optimization). We will thus try here to re ne the onset time
estimate of each note using the spectral portion q̃k(x, t; Θ̂)
obtained with the HTC method.
First, the spectral portion q̃k(x, t; Θ̂) can be combined at

each note number obtained from the estimated fundamental
frequency μ̂k, and the power envelope

Qn(t) =
X
k∈Cn

∫
q̃k(x, t; bμk)dx (4)

Cn =
˘
k
˛̨
A
`
n− 1

2

´
� bμk < A`n+ 1

2

´
, k, n ∈ N

¯
can be obtained at each note number (pitch) n where A =
100[cents], i.e., energy summation over one semi-tone inter-
val. Next, we discuss separation of power envelope Qn(t)
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Fig. 4. An example of model tting : the red curve represents obtained
power envelope and the green curve represents two tted model envelopes.

into individual sound events and estimation of onset times.
In this paper, we assume ideal-onset signal g(t;ω0, α, τ, c)
which has an ideal onset (onset time τ ) and exponential de-
cay (decay coef cient α), and single frequency ω0:

g(t) = cu(t− τ)ejω0(t−τ)e−α(t−τ).

Its model envelopeΨ(t; τ, α, C) can be obtained fromwavelet
transform of g(t;ω0, α, τ, c) at frequency ω0:

Ψ(t; τ, α,C) = Ce−2α(t−τ)

 ∫ t−τ− dα
2ω20

−∞
e−

ω20
d

s2ds

!2

,

and the n-th envelopeQn(t) in Eq.(4) can be approximated by
a summation of Lmodels. Parameters of the model envelopes
can be obtained by minimizing the objective function∫ ∞

−∞

˛̨̨
Qn(t)−

LX
l=1

Ψ(αl, τl, Cl, t)
˛̨̨2
dt. (5)

The parameters αl, τl and Cl is estimated by the following
iteration:
1. optimizingC = (C1, · · · , CL)T with αl,τl xed
2. Updating αl , τl by steepest decent withC xed (deter-
mining the step size by linear search).

Its convergence to a local optimum is guaranteed as the ob-
jective function is non-increasing at each step. An example
of the result of the model tting can be seen in Fig.4. We
nally obtain pitch frequency parameter μ̂k and the re ned
estimate of the onset time τl.
As the result of this step, combining of note events whose

pitch is given by HTC and onset time X given by estimated
τl, a MIDI data can be obtained.

3.3. Estimation of Rhythm and Tempo using HMM
Since pitch of each note is already identi ed in the preceding
steps, the music score can be obtained by estimating rhythm
information including note values, time signature, and posi-
tion of bar lines. We have been proposed a probabilistic top-
down approach for this estimation[10], which estimates the
rhythm score of polyphonic music from an IOI (Inter-onset
interval) sequence of MIDI performance data as shown in
Fig.5. Rhythm estimation can be formulated as MAP esti-
mation, i.e., estimating the most likely rhythm score for the
given IOI sequence. In our method, all of the aspects related
to rhythm estimation such as uctuation of tempo, deviation
of onset timings, grammar and vocabulary of rhythm patterns
are probabilistically modeled and integrated in the framework
of HMMs (hidden Markov models) in the same manner as
continuous speech recognition (CSR). Alternately executing
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Fig. 5. Procedure of polyphonic rhythm and tempo estimation from IOIs

these optimizations converges to the simultaneously optimal
rhythm pattern and tempo curve though not guaranteed to be
the global optimum.
Finally, combining the informations of the note number

estimated by the HTC and the rhythm pattern estimated by
the HMM-based method, the most likely score for the given
audio signals can be obtained. That is, automatic transcription
is performed.

4. EXPERIMENTS AND DISCUSSION

4.1. Experimental Setup
We experimentally tested our approach to automatic music
transcription from an audio input executing our proposed sys-
tem. A waveform data of a piano piece by Bürgmuller per-
formed by a human was sampled at 16kHz and fed to the sys-
tem. In the experimental setup, 3-rd order polynomials were
chosen for tempo curves, and 40 acoustic models per 6.4 secs
in HTC. The number of envelope models in onset time esti-
mation was determined automatically from the change in the
power envelope. HMM parameters in rhythm and tempo esti-
mation were trained with 137 MIDI data of piano pieces.

4.2. Experimental Results and Discussion
The yielded score from automatic transcription is shown in
Fig. 6 with the key signature manually given. A nearly cor-
rect score was estimated successfully for the top two lines
including chords. At point ‘a’ in Fig.6, the rhythm IOI was
successfully estimated as a quarter note, while the following
note was missing due to errors in approximation in HTC and
onset detection. On the other hand, at point ‘b’ in the same
gure, missing eighth notes caused errors in the bar line posi-
tions.
Note deletions are considered to be caused by xed num-

ber of notes in HTC and onset time estimation, and may be
improved by applying an information criterion such as Akaike’s
Information Criterion (AIC). Some of errors in HMM-based
rhythm estimation are considered to be caused by mismatches
between the erroneous input and the “rhythm vocabulary,”
and may be improved in the future taking into account the
presence of ‘noise,’ i.e., deletions and insertions in the input
onset sequence.

5. CONCLUSION AND FUTUREWORK

In this paper, we discussed automatic music transcription of
audio signal into music score by integrating our approahces

4
4

a

b

(a) Automatically transcibed result

4
4

(b) Correct score (Burgmüller’s piano studies Op.100-10.)
Fig. 6. A sample result of automatic transcription from audio input

of Harmonic-Temporal-structured Clustering (HTC) for mul-
tipitch analysis, HMM-based rhythm recognition and tempo
estimation, and newly proposed onset time estimation. We ex-
perimentally evaluated the proposed system with audio inputs
performed by piano. Future work will include thoroughly in-
tegrated framework for HTC incorporating musical constraints
concerning rhythm and chord.
This research was partly supported by MEXT Grant-in-

Aid #17300054 and CrestMuse Project of JST.
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