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ABSTRACT

Traditional passive broadband source localization techniques like
maximum likelihood estimation and MUSIC have shown dif culties
in situations where multiple correlating source signals are interfer-
ing with each other. Blind Source Separation (BSS) algorithms on
the other hand have demonstrated good performance in separating
correlated mixture signals into independent sources. In this paper it
will be shown that the performance of traditional source localization
algorithms can be improved by using a permutation-free frequency
domain BSS algorithm as a front end. In addition a source local-
ization method based solely on information gained from the sepa-
rated BSS solution and sensor array architecture is presented. The
methodologies are illustrated in an undercomplete acoustic scenario
involving 3 speech sources and a 6 element microphone array.

Index Terms— Passive source localization, source separation

1. INTRODUCTION

Blind Source Separation (BSS) or Independent Component Analysis
(ICA) algorithms for convolutive mixtures have experienced many
developments in the past and recently the performance of frequency
domain based methods has become more robust through the solution
of the frequency permutation problem [1]. In many studies the BSS
solution unmixing multiple source scenario into independent sources
has been used to retrieve direction of arrival (DOA) information for
each separated source [6], but little research has been done to use
BSS for ranging purposes to allow complete source localization. A
traditional technique in source localization includes the maximum
likelihood (ML) solution [2], but it did not become popular due to its
high computational cost. Concurrently, a variety of suboptimal tech-
niques with reduced computations have dominated the eld. Stan-
dard techniques include the minimum variance method of Capon [2]
and the multiple signal classi cation (MUSIC) method of Schmidt
[3]. However a well known problem with these techniques occurs
when two or more sources are highly correlated in time or space.
The performance of these traditional techniques can be robusti ed
by using BSS as a front end to decorrelate individual interfering sig-
nals before source localization as will be shown in the following.

2. INDEPENDENT VECTOR ANALYSIS (IVA)

In the frequency domain, complex ICA is concerned with nding an
unmixing matrixW(ω) for each frequency ω such that the demixed
outputsY(ω, l) = W(ω)X(ω, l), where
X(ω, l) = [X1(ω, l), · · · ,XM (ω, l)]T (time window l, number of
mixturesM ) is the DFT of time domain mixtures x(t), are mutually

independent. The update rule forW(ω) [1] is given by

ΔW(ω) = μ
[
I− < Φ(Y(ω, l)Y(ω, l)H >

]
W(ω) (1)

where Y(ω, l) = [Y1(ω, l), · · · , YM (ω, l)]T , <> denotes the av-
eraging operator in time l = 1, · · · , L and μ is the learning rate. The
traditional Infomax activation function is given by
Φ(Yj(ω, l)) = tanh(|Yj(ω, l)|) Yj (ω,l)|Yj (ω,l)|

which along with the up-
date rule (1), implies that the ICA problem is solved for each fre-
quency bin independently, leading to the permutation problem [6].
In [1], it was however shown that by assuming the signal of inter-
est have a certain dependency in the frequency domain that can be
modeled by a multi-dimensional prior, the dependent sources can be
extracted as a group using such a prior. Such an assumption leads
for example to the IVA multi-variate activation function [1]

Φ(Yj(ω, l)) =
Yj(ω, l)√∑
ω

|Yj(ω, l)|2
(2)

with the L2 norm of Yj(ω, l) over all ω at the denominator. The
multi-variate activation function used here is a special case of a more
general learning rule derived from general statistical distributions
[1]. Scaling ambiguity of W is resolved by a scaling matrix de-
signed with the minimum distortion principle [6].

3. TRANSFORMATION FROM MULTIPLE SOURCE TO
SINGLE SOURCE SCENARIO

The separation with IVA algorithm (2) yields the demixed signals
Yj(ω, l). To transform the original multiple source data X into
single source recorded data, a corresponding data matrix for each
source component Yj is reconstructed by computing the inverse (or
pseudo-inverse) ofW and selectively backprojecting an output of
interest Yj (Figure 1) i.e.

X̂(Yj)(ω, l) = W
−1(ω)

[
Ŝ1(ω, l), · · · , Ŝj(ω, l), · · · , ŜM (ω, l)

]T
,

where Ŝj(ω, l) = Yj(ω, l) and Ŝk(ω, l) = 0 for k �= j, k=1,· · ·M .
If the IVA separation is complete, this backprojecting process be-
comes equivalent to recording a single source mixture, with the re-
constructed mixture data X̂(Yj) now containing the time delay of
arrival (TDOA) or range difference (RD) information for a single
source in a certain location with respect to the microphone array.
Since the reconstructed recording estimate X̂(Yj) only contains one
source, single source TDOA estimation techniques and correspond-
ing ranging methods can be applied. In addition, source localization
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can be performed by using information from the inverse ofW alone.
4 different source localization methods are presented as illustrated by
Figure 1.
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Fig. 1. Overview of blind source separation based source localiza-
tion strategies

3.1. Source localization using range differences fromW−1

Since the recorded mixture signals are separated into estimated source
signals Y(ω, l) = W(ω) X(ω, l), the inverse of W , W−1, con-
tains information about the mixing scenario X(ω, l) = H(ω) ∗
S(ω, l) (H denotes the mixing transfer function matrix) asX(ω, l) =
W−1(ω) Y(ω, l). If the IVA separation is complete and selected
outputs in Y are good approximations of the true sources S, the
phase differences between elements

[
W−1

]
mp

(ω) and
[
W−1

]
np

(ω)

of selected columns p ofW−1 are related to the phase differences
between the transfer functions Hmp from a source p to mic m and
Hnp from a source p to mic n [6]. From these, the range difference
dpmn between a source p to mic m distance and a source p to mic n
distance de ned as
dpmn =

√
(xp − xm)2 + (yp − ym)2−√

(xp − xn)2 + (yp − yn)2,
with (xp, yp), (xm, ym) and (xn, yn) being the coordinates of source
p, mic m and n respectively, can be estimated as

dpmn(ω) = − c

ω
arg(

[
W−1

]
mp

(ω)

[W−1]
np

(ω)
) (3)

c = 340m
s

being the sound propagation velocity. Therefore the
separation process yields a set of range differences (RD) for each
source p for each microphone pair over all frequencies. For a given
source and microphone pair, the estimated range difference should
be consistent over all frequencies. There is however only a limited
frequency range [ωlb, ωub] over which this quantity can be estimated.
The upper bound is given by spatial aliasing that may occur starting
around ωub = 0.5 c√

(xm−xn)2+(ym−yn)2
[7, 2]. A lower bound

for this frequency range is motivated by incomplete separation of
mixture signals in the very low frequencies due to small microphone

spacing and the fact that for a particular band λ to be useful in near
eld source localization, the source should not exceed a certain dis-

tance from the array approximately given by 2∗D2

λ
, D being the

largest array dimension [7]. Beyond that distance, the source is in
the far eld of the array for this band and information gained through
the use of this band will be unreliable for ranging purposes. Finally,
RD estimates in [ωlb, ωub] show small random uctuations (see Fig-
ure 3). By modelling these changes by Gaussian noise and averaging
the sequence of frequency dependent range RD values for example
with a Kalman lter, an average RD d̄pm,n is obtained for each source
p and mic pair (m,n).

The estimated RDs have to be combined to yield a consistent
source localization result (xp, yp) for each source p over all mic
pairs. Here, a least squares spherical interpolator is used by [2]

min
xp,yp

∑
m,n

(
d̄pm,n − d(xp, yp)m,n

)2
(4)

where d(xp, yp)m,n =
√

(xp − xm)2 + (yp − ym)2 −√
(xp − xn)2 + (yp − yn)2. The unconstrained cost function must

be minimized using nonlinear optimization techniques [2].

3.2. Source localization using range difference information gained
through weighted cross correlation

Range difference estimates can also be obtained by determining the
TDOAs from the cross correlations between reconstructed single
source mic recordings X̂(Yj). For a given mic pair (m,n) and back-
projected output Yj , the cross correlations
Rmn(l, τ ) =

∑ωub
ωlb

Ψ(ω)X̂m(Yj)(ω, l)
(
X̂n(Yj)

)∗
(ω, l) ei ω τ

are determined where a GCC-PHAT weighting was chosen [4]:
Ψ(ω) = ‖X̂m(Yj)(ω)

(
X̂n(Yj)

)∗
(ω)‖−1. The best TDOAs τ are

used to compute the average RD
d̄pm,n =

∑L
l=1

c
L

∗argmaxτ Rmn(l, τ ) and problem (4) is solved
for a source p given the d̄pm,n over all mic pairs (m,n). A limited
range [ωlb, ωub] is required as discussed in section 3.1 and because
little speech power is contained in the higher frequencies.

3.3. Wideband MUSIC source localization

The basic idea in this approach is to nd the steering vector or-
thogonal to the null space of the array recorded data spatial spec-
tral density matrix [3] Pxx(ω) =

∑L
l=1 X(ω, l)X(ω, l)H/L.

Here, the reconstructed single source matrix X̂(Yj) is used instead
of the original recorded data X. A singular value decomposition

of Pxx(ω) = [Us(ω)Un(ω)]

[ ∑
s
(ω) 0
0

∑
n
(ω)

] [
UHs (ω)
UHn (ω)

]

is computed to yield the signal subspace Us(ω) and noise subspace
Un(ω) with respective singular values

∑
s
(ω) and

∑
n
(ω) at ω. To

nd the correct steering vectors
a(ω,x, y) = [e−i∗2∗π∗ω∗t1 e−i∗2∗π∗ω∗t2 · · · e−i∗2∗π∗ω∗tM ]T

with the time delays tm, m = 1, · · · ,M de ned by
tm =

√
(x− xm)2 + (y − ym)2/c, the indicator

IMUSIC(x, y) =
1∑ωub

ωlb
‖a(ω, x, y)H Un(ω)‖ (5)

is computed over a frequency range [ωlb, ωub] as discussed in sec-
tions 3.1 and 3.2. (xm, ym) are the location of microphones m, m=
1, · · · ,M and (x, y) is the array steering location. The indicator will
yield a maximum as the steering vector steers to the correct location.
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Fig. 2. Acoustic scenario in Example 1 (left plot): Male speaker
source 1 (0.6,0.45); Male speaker source 2 (0.26,0.64); Female
speaker source 3 (-0.85,-0.15). Example 2 (right plot): Male
speaker source 1 (0.65,0.39); Male speaker source 2 (0.46,0.46); Fe-
male speaker source 3 (-0.85,-0.15); DOA = atan( y

x
)

3.4. Maximum likelihood source localization

In this approach [2], the array recorded mixture signal is modeled
by X(ω) = A(ω) S(ω) + η(ω) where A is the steering matrix

given by A(ω) =
[
a(1)(ω), · · · , a(P )(ω)

]
with the steering vectors

ap(ω, xp, yp) = [gp1e
−i∗2∗π∗ω∗t

p
1 · · · gpMe−i∗2∗π∗ω∗t

p
M ]T ,

tpm =
√

(xp − xm)2 + (yp − ym)2/c, (xp, yp) and (xm, ym) the

coordinates of source p and mic m. S(ω) =
[
S1(ω) · · ·SP (ω)

]T
is the source spectrum matrix and the noise spectrum η(ω) is as-
sumed zero mean complex white Gaussian. The maximum likeli-
hood estimation of the source locations and source signals results
from the solution of min

xp,yp, p = 1,··· ,P
= ‖X(ω) − A(ω) S(ω)‖

After solving for S(ω) and substituting, the optimization criterion
for a single source p becomes [2]

max
xp,yp

IML =

ωub∑
ωlb

‖āp(ω,xp, yp)H X(ω)‖ (6)

with āp = ap√∑
M
m=1

g
p
m

. Since we consider near- eld sources, the

signal strength at each sensor can be different due to nonuniform
spatial loss in the near- eld geometry. It is assumed here that gpm =
1 i.e sensor gains are uniform and spatial loss negligible.

By selectively backprojecting each single separated IVA out-
put Yj and substituting X with X̂(Yj), the corresponding source
p source can be localized using this single source case optimization
objective. It therefore avoids having to solve a multiple source ML
objective with the recorded X involving intense computations and
local minima in the case of highly correlated sources [2]. As dis-
cussed in sections 3.1 and 3.2, lower and upper bounds for ω apply.

4. EXPERIMENTS

Experiments were carried out in an of ce environment (3m × 5m
× 3m, T60 = 340 ms) with 6 omni directional microphones to sepa-
rate 3 speaker signals each playing back continuous prerecorded sen-
tences(Figure 2). The mic locations were [-0.095,0.095] (#1), [-0.12
-0.02] (#2), [-0.035 -0.12] (#3), [0.08 -0.125] (#4), [0.12 0.01] (#5)
and [0.035 0.11] (#6). Source separation using the Infomax algo-
rithm with activation function (2) was obtained using 20 sweeps on
15 second 8 kHz mixture recordings using different lter initial con-
ditions to assure complete convergence. The lter length was 256,
the FFT length 512 with an overlap of 350 samples. After computing
the frequency domain lter taps inW(ω), equivalent time domain
lters were computed and the time domain mixture signals ltered
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Fig. 3. Example 1: Range difference estimates per frequency bin
(eq. 3) for source 2/mic pair (3,4) (left plot) and source 2/mic pair
(2,4) (right plot): spatial aliasing occurs for mic pair (3,4) around
1.4 kHz compared to 1 kHz for wider spaced mic pair (2,4).

to obtain the separated source signals. The separation is quanti ed
by the SIR values (de ned as as the ratio of the signal power of the
target signal to the signal power from the interfering signals ) given
in Table 1. Since the mixing scenario is undercomplete (6 mics, 3
speakers), the outputs that contained the separated sources were de-
termined in a supervised manner. Using the pseudo-inverse of the
unmixing matrixW(ω), the individual source signals were then se-
lectively backprojected.

SIR (dB) Source 1 Source 2 Source 3
Ex 1 / Ex 2 Ex 1 / Ex 2 Ex 1 / Ex 2

Recording -5.03 / -4.12 -3.51 / -9.64 -7.34 / -3.44
Separation 20.02 / 19.22 18.55 / 11.37 17.25 / 12.96

Table 1. Source SIR in recorded and separated data (Example 1/2)

As shown in Figure 3, RD estimates obtained from eq. 3 to infer
source localization from the pseudo inverseW−1 are only reliable in
a limited frequency range [ωlb, ωub]. In addition to spatial aliasing
shown in Figure 3 de ning the upper bound, the RD values below
0.5 kHz show large variations in both examples, indicating a lower
bound as discussed in section 3.1. A nal average RD in band [0.5−
0.9] kHz for mic pair (2,4) and band [0.5−1.3] kHz for mic pair (3,4)
is estimated using a Kalman lter with the estimates from eq. 3 as
the input sequence to be smoothed.

Table 2 summarizes the results obtained with the different source
localizations techniques discussed. The optima for objectives 4, 5
and 6 were found using an implementation of the simplex function
optimization algorithm [2]. Maximum likelihood estimation on the
original multi-source recorded data using single source search grids
[2] failed to resolve speakers 1 and 2 and is therefore inappropriate
for addressing closely spaced sources (see Figure 4). MUSIC ap-
plied to the recorded data of example 1 yielded a signal subspace
of 3 principal components which were used to determine the spatial
location of all sources with good accuracy. However, in example 2,
only 2 signal subspace components were obtained resulting in the
detection of only one source located in between source 1 and source
2 (see Figure 6). On the other hand, maximum likelihood and MU-
SIC applied to the individually backprojected IVA separated outputs
yielded good source localization accuracy. As shown in Figure 5 &
7, the IVA-maximum likelihood method correctly resolved sources
1 and 2 although located spatially close together. Morover it can be
seen that the least squares methods based on RD estimates tended to
over estimate the range of the separated sources due to the at optima
(see Figure 4-7). Also, the least squares solutions obtained through
the use ofW−1 are more accurate than using RD estimates obtained
with GCC-PHAT on the backprojected data. The corresponding
DOA errors (Δ DOA = ‖ atan( y

x
)-atan( ytrue

xtrue
)‖) are however quite

small (less than 6 degrees on average) so the RD estimated through
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ML MC ML MC LS GCC
Example 1 X X IVA IVA IVA IVA

Source1 rms(m) N/A 0.11 0.03 0.03 0.17 0.11
Source2 rms(m) N/A 0.04 0.04 0.11 0.05 0.14
Source3 rms(m) 0.18 0.04 0.04 0.11 0.13 0.18
Mean rms(m) N/A 0.06 0.04 0.08 0.12 0.14

Mean DOA error N/A 4.4o 2.3o 2.7o 4.4o 4.1o

Example 2
Source1 rms(m) N/A N/A 0.03 0.11 0.03 0.05
Source2 rms(m) N/A N/A 0.03 0.08 0.29 0.25
Source3 rms(m) 0.12 0.04 0.10 0.07 0.12 0.22
Mean rms (m) N/A N/A 0.05 0.09 0.14 0.17

Mean DOA error N/A N/A 0.7o 0.9o 2.0o 6.0o

Table 2. Range(rms)/DOA estimation errors for Example 1 &
2: ML-X = Maximum likelihood estimation applied to original
recorded data X; MC-X = MUSIC applied to X; ML-IVA = ML
applied to backprojected data X̂(Yj); MC-IVA = MUSIC applied
to backprojected data X̂(Yj); LS-IVA = Least squares interpolation
(eq.4) using RDs fromW−1; GCC-IVA = Least squares (eq.4) using
RDs from GCC-PHAT on backprojected data X̂(Yj);

W−1 and GCC-IVA are useful. Hence the limited range precision
of the least squares techniques with this particular microphone array
can be improved in better conditioned source-microphone arrange-
ments. 5. CONCLUSIONS

It was shown that using a blind source separation algorithm as a
front end to traditional multi-source localization techniques can sig-
ni cantly enhance spatial resolution of such techniques by trans-
forming a multi-source localization problem into single source sce-
narios. In particular a source localization technique was presented
where range difference information is retrieved directly from the
blind source separation unmixing matrix for subsequent use in least
squares spherical interpolation.
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