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ABSTRACT

We re ne the classical IndependentComponentAnalysis (ICA)
decomposition using a multilinear expansion of the probabil-
ity density function of the source statistics. In particular, to
model the source statistics of natural image textures, we intro-
duce a speci c non-linear system that allows us to elegantly
capture the statistical dependences between the responses of
the Multilinear ICA (MICA) lters. The resulting multilin-
ear probability density is analytically tractable and does not
require Monte Carlo simulations to estimate the model pa-
rameters. We demonstrate the success of the MICA model on
natural textures and discuss applications to non-stationarity
detection and natural scene statistics (NSS) modeling.

Index Terms— Multilinear ICA, Non-linear Modeling,
Textures, Natural Scene Statistics (NSS).

1. INTRODUCTION

The construction of accurate prior models of source data is
essential to many applications, such as low-level vision, for
which unsupervised learning methods must be applied due to
the inherent lack of labeled training sets. Such prior mod-
els give a framework in which to correctly interpret the data
thereby serving as the basis for subsequent analysis viewed
from different levels of abstraction. The classical statistical
tools that exist for this purpose include Principle Component
Analysis (PCA), IndependentComponent Analysis (ICA), Mul-
tidimensional Scaling (MDS) etc. [1].

In this paper we develop a novel re nement of the clas-
sical ICA decomposition that involves a multilinear expan-
sion of the probability density function of the source. De-
note the probability of the source that we are modeling by
P (X), whereX is a random variable whose realizations have
dimensionality d. The goal of ICA is to factor the proba-
bility density of the source into a product of distributions:
P (X) =

∏d
i=1 P (si), where si = X ∗ φi corresponds to

a ltered response of the source. The lters {φi}d
i=1 are the

ICA lters of the source. Statistical algorithms for comput-
ing the ICA lters have been the subject of intense study over
the past decade [2], most of which involve the construction of
different cost functions (usually variations or special cases of
the maximum likelihood based cost function).

Supported by NSF grant 0427372.

Though ICA enables us to compactly representP (X) and
to fruitfully utilize the statistically independent directions of
the data in many applications [2], unfortunately the statistics
of many real-world sources, such as natural image patches,
cannot be factored into such a simple form–as a result the
so-called independent components can contain signi cant de-
pendences between them [3].

In this paper we explicitly capture such statistical depen-
dencies by means of a multilinear representation of P (X):
P (X) = 1

Z g(J)
∏d

i=1 P (si), where {si = X ∗ φi}d
i=1, and

such that g : J = [s1, · · ·, sd]T → R, where Z ∈ R is a
normalizing constant. Of all possible multilinear expansions
of this form that could describe the source distribution, we
are interested in the one that makes the representation of the
source as sparse as possible, i.e., which minimizes the con-
tribution of g(J)–in particular, we are interested in obtaining
closed form approximations for such a g(J). Such a mul-
tilinear form retains all the attractive properties of the ICA
decomposition while at the same time lumps the interactions
of the ltered responses into the function g(J). Clearly when
g(J) is separable with respect to the lter responses (or iden-
tity), then this reduces to the classical ICA representation.

The success of the method of course depends upon the
verity of our numerical approximation of g(J). Analytical
methods of approximating g(J) in terms of Taylor expansions
seem formidable. Further complicating the matter is the fact
that one has to estimate Z which, in general, requires tedious
Monte Carlo simulations.

In Section 2, for the purpose of modeling natural scenes
patches, we introduce a non-linear system model that enables
us to circumvent the above issues in furnishing a multilinear
expansion of P (X). We call the resulting re nement of ICA
the Multilinear ICA (MICA) Model. We successfully deploy
the new method to model natural scene textures in Section 3
and demonstrate advantages relative to classical ICA. Exten-
sions to mixtures of MICA models for modeling NSS are dis-
cussed in Section 4 along with applications to non-stationarity
detection.

2. MULTILINEAR ICA MODEL

We begin by considering the classical ICA model wherein the
observation s̃ is modeled as follows: s̃ = Bz; where s̃ =
[s̃1, · · ·, s̃d]T ∈ Rd, z = [z1, · · ·, zd]T ∈ Rd, d is assumed to
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be the intrinsic dimensionality of the data, and B ∈ Rd×d is
a full-rank matrix. The goal of ICA is to nd a matrixB such
that the resulting components of z are independent random
variables.

However, as mentioned in the previous section, for many
real-world sources such as natural image patches, such an
ideal decomposition is not possible and so the components
of z will contain residual dependencies. Our aim is to ex-
plicitly capture these dependencies. In doing so we must rst
recognize that z cannot be further decomposed as a combina-
tion of independent sources via another full-rank matrix! It is
possible, however, that z can be decomposed with respect to
an under-complete linear model but this requires knowledge
of the subspace dimensionality.

An alternate view which we espouse in this paper is that,
given the knowledge of the intrinsic dimensionality d, the
residual dependencies can be captured via non-linear com-
binations of independent sources. The choice of the non-
linearity, as well as of the source distribution, must be as
simple as possible, and yet must successfully account for the
probabilistic structure of the observed natural image patches.
To simplify matters further, we rst concern ourselves only
with modeling unimodal distributions; later on we suggest
how to extend this to multimodal cases via mixtures of MICA
models. Unimodal distributions are applicable to most natural
scene textures of which we give some examples in Section3.

Perhaps the simplest possible non-linear system that one
can hypothesize for this purpose is a quadratic channel. From
our experiments with natural scene textures, we found that the
hybrid linear-quadratic model (stimulated by i.i.d. Gaussian
sources) shown in Fig. 1 does indeed successfully account for
the probabilistic structure of natural image patches. We now
describe this non-linear system in detail.

The observable source data that we are modeling is s̃ ∈
Rd. B ∈ Rd×d is a full-rank matrix as mentioned above. B is
initially chosen to be the matrix associated with the classical
ICA decomposition of s̃ and, as explained in more detail later,
can be re-estimated in subsequent iterations. The system F
shown in Fig. 1 models the residual interaction between the
components of z ∈ Rd. It consists of a core non-linearity ϕ
preceded by a linear system y = As + γ, where y = [y1, · ·
·, yd]T ∈ Rd, γ = [γ1, ···, γd]T ∈ Rd, and s = [s1, ···, sd]T ∈
Rd consists of i.i.d. Gaussian sources such that si˜N(0, 1).
The variance of the Gaussian channels is determined by σ =
[σ1, · · ·, σd]T ∈ Rd as shown in Fig. 1. Let the Gaussian
density of the ith channel be denoted by q(si). The parameter
β ∈ R is a scalar that is applied to all channels; and nally,
let C = [Ci,j ] = [CT

1 , · · ·, CT
d ]T = A−1 ∈ Rd×d.

The core non-linearityϕ consists of complementary linear
and quadratic channels. Operators u1,α and u2,α are comple-
mentary limiters with respect to parameter α such that:

u1,α(yi) + u2,α(yi) = 1
u1,α(yi), u2,α(yi) ≥ 0, for all 1 ≤ i ≤ d

A simple choice of these limiters, which we have found to

be useful for modeling natural image textures (as shown in
Section 3), is the complementary step functions of the fol-
lowing form: u1,α(yi) = u(yi + α)− u(yi − α), u2,α(yi) =
1−u1,α(yi), where u(x) is the unit step function, and α = 1.

Thus we have that ϕ(y) = yu1,α(y) + ϕq(y)u2,α(y),
where y = As + γ ∈ Rd, ϕq(y) = y2sgn(y) (where all op-
erations on y are applied component-wise). For this choice of
(u1,α, u2,α), it follows that: ϕ̃(βz) ≡ ϕ−1(w) = βzu1,α(βz)+
ϕ−1

q (βz)u2,α(βz), whereϕ−1
q (βz) = {√|βzi| sgn(βzi)}d

i=1.
Since the non-linearity is invertible, system F is also invert-
ible: s = F−1(z) = C[ϕ̃(βz) − γ]. Thus we have that:
sk = F−1

k (z) = CT
k [ϕ̃(βz)− γ].

Given the above, the distribution of z has the following
form: p(z) = 1

|J(F )|
∏d

k=1 q(F
−1
k (βz)), where q(sk) is the

kth source channel. Expanding the above terms we obtain:

p(z) =
K

|J(F )|g(J)
d∏

k=1

p(ziβ) (1)

where,

p(zi) = exp(− 1
2 (

∑d
k=1

C2
k,i

σ2
k

)ϕ̃2(zi)−(
∑d

k=1
CT

k γ

σ2
k

Ck,i)ϕ̃(zi))

g(J) = exp(−∑
i�=j Gi,j ϕ̃(zi)ϕ̃(zj)),K =

exp(−�d
k=1

(CT
k γ)2

2σ2
k

)

(2π)d/2σ1··σd

and Gi,j = −∑d
k=1

Ck,iCk,j

σ2
k

. J(F ) is the Jacobian associ-

ated with the transformationF . The following lemma (proved
in Appendix) yields a closed form expression of the Jacobian.
Lemma 1: The Jacobian J(F ) for the above transformation
is given by: J(F ) = 1

|C|βd

∏d
k=1 ψ(βzk), where ψ(βzk) =

u1(βzk)+2|ϕ−1
q (βzk)|u2(βzk). ♣

Given the structure of the MICA distribution in (1), the
qualitative roles of each of the parameters described above
are evident. We make special mention of matrix [G i,j ] and
parameters (β, σ). The MICA interaction matrix [Gi,j ] cap-
tures the interaction among the MICA components. In partic-
ular, when [Gi,j ]i�=j = 0, the MICA components are indepen-
dent. The parameter β determines the amount of nonlinearity
in the system which can be qualitatively understood as fol-
lows: when training the MICA model (given the data z), β
determines the extent to which w is scaled inside the unit in-
terval and consequently determines (i.e. after σ is adjusted
as a part of the MICA optimization) the extent to which the
linear channel of the system is active.

From the MICA model in (1), closed form expressions
of the gradients of the MICA log-likelihood function with
respect to all the parameters (i.e. C, σ, γ, β and B) can
be derived in a straightforward manner. These gradients can
then be used to compute the optimal parameters of the MICA
model. As described in Section 1, our goal is to obtain a mul-
tilinear expansion ofP (X) that corresponds to a sparse repre-
sentation of the source. We accomplish this by initializing B
with the matrix associated with the classical ICA decomposi-
tion of source s̃. Thereby we obtain z = Bs̃. Thereafter we
can invoke the optimization algorithm to compute the param-
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Texture
∑

i�=j |Gindep
i,j | for

∑
i�=j |Gi,j | using

Indep. Channels Actual Data
Sand 0.0269 0.2045

Gravel 27.8389 80.1025

Table 1. Interchannel interaction, which is measured by�
i�=j |Gi,j |, decreases as expected when using truly independently

sampled channels

eters C = A−1, σ, γ, and β. In the simulations (Section 3)
all parameters except for β (which is hand-picked) are com-
puted automatically by the optimization algorithm (although
β can also potentially be automated using the closed form
gradient descent equation derived from the MICA distribu-
tion (1)). At this stage one obtains a multilinear expansion
of P (X) as given in (1), the structure of which is fully spec-
i ed by these computed parameters. One can further re ne
the estimate of B by invoking a gradient descent algorithm
with respect to B (while xing the parameters (C, σ, γ, β) to
the the values obtained in the previous step). Once the ma-
trix B is computed, the above 2-step process of re-estimating
(C, σ, γ), followed by re-estimation of B can be performed
until the desired level of accuracy is achieved. In the simula-
tions below we nd that even just the estimation of (C, σ, γ),
without subsequent re-estimation of B, can outperform clas-
sical ICA based modeling of natural image textures.

3. SIMULATION RESULTS

We applied the parameter estimation algorithm described in
the previous section to model natural image textures [4]. The
texture images were sampled uniformly at random locations
with 3x3 patches (i.e. d = 9). An ICA was then performed
on the data vectors obtained from each texture using Comon’s
algorithm [5] to obtain the B matrix described above. Subse-
quently the parameters (C, σ, γ) of the MICA model were es-
timated as described in Section 2 (for the hand-picked values
of β chosen for each texture as given below). For each tex-
ture, we compare the actual data distributions of each channel
to the corresponding distribution predicted by the ICA and
MICA models. In addition, the average of all the data chan-
nels is also compared with those predicted by the ICA and
MICA models.

Simulation of the MICA model is accomplished by gener-
ating d = 9 i.i.d. zero mean, unit variance Gaussian channels
as shown in Fig. 1 and plotting the histograms outputs of the
channels (or ltered outputs thereof) when the optimal param-
eters computed (for the texture being modeled) are used. The
ICA model is simulated by rst computing the empirical dis-
tribution of each channel. Once the empirical distributions of
the ICA-channels are obtained, they are independently sam-
pled and then processed the B matrix. The histograms of the

resulting outputs are then compared to the corresponding data
distributions and the predictions of the MICA model.

Figs. 2(a) and 2(d) show the histograms of two of the
channels for the Sand texture. Figs. 2(b) and 2(e) show the
corresponding ICA distributions; and Figs. 2(c) and 2(f) show
the corresponding MICA distributions. Fig. 2(g) shows the
histogram of the data distribution when all the data channels
for the sand texture are averaged together. Fig. 2(h) and Fig.
2(i) show the corresponding distributions obtained from the
ICA and MICA models respectively. For the sand texture,
β = 1 was chosen to obtain the MICA results. The dis-
tributions have been mean shifted about zero and scaled to
t the same interval. All these results show the MICA dis-

tributions to approximate the original data distribution more
closely than the corresponding ICA distributions. Similar re-
sults are obtained for the Gravel texture in Fig. 3 (for gravel
texture β = 0.0033 was chosen to obtain the MICA results).

We remark that since MICA interaction matrix [Gi,j ]i�=j

captures the interaction among the multilinear ICA lters (Sec-
tion 2),

�
i�=j |Gi,j | can give us a measure of the inter-channel

interaction. Consequently, if instead of training the MICA
model on {zk}d

k=1, we instead train it on channels that are
truly independently sampled from the empirical ICA distri-
butions corresponding to each channel, we expect the corre-
sponding matrix [Gindep

i,j ]i�=j to be such that
∑

i�=j |Gi,j | ≤∑
i�=j |Gindep

i,j |. This is indeed what we observe in Table 1,
which reinforces the fact that the MICA model captures inter-
channel interaction which thus enables it to better account for
the true data distribution as compared to its ICA counterpart.

4. DISCUSSION

As an application of the concepts discussed in the preced-
ing sections, consider the problem of determining whether a
given image segment is non-stationary, i.e., whether it con-
tains different types of textures. The following lemma fur-
nishes a non-stationarity index that measures the degree of
non-stationarity of a given image patch.
Lemma 2: Let T be a non-stationary image patch that con-
sists of 2 non-overlapping textures that partitionT ; one which
we call the center patch and the other the surround patch.
Let {φc

i}d
i=1 be the MICA lters of the center patch. Let I c

and Is be random variables that correspond, respectively, to
d-dimensional samples of the center and surround patches.
Let Jc = [Ic

1 , · · ·, Ic
d] and Js = [Is

1 , · · ·, Is
d ], where Ic

k =<
Ic, φc

k >, Is
k =< Is, φc

k >. Further let μc and μs denote the
joint probability densities associated with Jc and Js respec-
tively. Then we have that:

η =
�

m �=n Eμs [<ϕ(Is
m),ϕ(Is

n)>]Gs
m,n+Cs

1+Cs
2�

m �=n Eμc [<ϕ(Ic
m),ϕ(Ic

n)>]Gc
m,n+Cc

1+Cc
2
> 1, such that

Gc
m,n and Gs

m,n are the MICA interaction matrices corre-
sponding to Jc and Js respectively, where C c

1 = D(μc(Jc)
||gc(Jc)

∏d
k=1 pc(Ic

k)) andCc
2 = Eμc [ln(

∏d
k=1

pc(Ic
k)

μc
m(Ic

k))] (and
where similar expressions hold for C s

1 and Cs
2); given that
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Fig. 1. Non-linear system model that accounts for the multilinear
structure of source statistics derived from natural scene data.
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Fig. 2. Sand Texture: Histograms of the Data channels and the
corresponding ICA and MICA distributions.

D(p||q) =
∫
pln(p

q ) is the Kullback-Leibler divergence, μc
m

and μs
m are the marginals associated with the ICA approxima-

tions of Jc and Js respectively, and q(Jc) = gc(Jc).
�d

k=1 pc(I
c
k)

and q(Js) = gs(Js).
�d

k=1 ps(I
s
k) are the MICA distributions

associated with Jc and Js respectively. ♣
The proof of Lemma2 follows immediately from the fact

that: D(μc(Jc)||
∏d

k=1 μ
c
m(Ic

k)) < D(μs(Js)||
∏d

k=1 μ
s
m(Is

k))
for non-stationary patches (and where β is assumed to be
unity throughout without loss of generality). Furthermore
given that different textures have non-identical independent
components, it follows that equality holds if and only if the
patch being analyzed is stationary.

Finally we remark that in the preceding sections we have
dealt with the problem of modeling unimodal distributions as-
sociated with natural image textures. In general when mod-
eling multimodal distributions obtained from NSS, however,
more accurate results could be obtained by mixtures of MICA
models. The question of parameter estimation for this case is
a subject of future work.

5. APPENDIX

Proof of Lemma 1: We prove the lemma by induction on d.
For the base case (d = 2), it is easily shown that: J(F ) =
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Fig. 3. Gravel Texture: Histograms of the Data channels and the
corresponding ICA and MICA distributions.

1
|C|β2

∏2
k=1 ψ(βzk). Now assume by inductive hypothesis

that the lemma is true for d = 2, · · ·, N . Now consider the
Jacobian when d = N + 1:

J(F ) =

∣∣∣∣∣∣∣∣∣

∂F1
∂s1

· · ∂F1
∂sN+1

· · · ·
· · · ·

∂FN+1
∂s1

· · ∂FN+1
∂sN+1

∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣

a1,1ψ(βz1) · · a1,N+1ψ(βz1)
· · · ·
· · · ·

aN+1,1ψ(βzN+1) · · aN+1,N+1ψ(βzN+1)

∣∣∣∣∣∣∣∣
(obtained after some manipulation). Now let us expand J(F )
with respect to the rst row:
J(F ) = 1

βN+1

�N+1
k=1 (−1)k+1(|C(1,k)|a1,kψ(βz1)) (whereC(1,k)

is the minor matrix of J(F ) with respect to (1, k), and |.|
when applied to matrices denotes the determinant). Now ap-
plying the inductive hypothesis we have:
J(F ) = 1

βN+1

�N+1
k=1 ψ(βzk)

�N+1
k=1 (−1)(k+1)|A(1,k)|a1,k (where

A(1,k) is the minor matrix of A with respect to (1, k)). Thus
J(F ) = 1

βN+1

∏N+1
k=1 ψ(βzk)|A| = 1

βN+1|C|
∏N+1

k=1 ψ(βzk)
thereby proving the lemma for all d.
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