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ABSTRACT

A new consistent objective function for nonparametric complex in-
dependent component analysis (ICA) is proposed where the complex
variables are restricted to be circular, or radially symmetric. This ob-
jective function is derived using an order statistics based density es-
timator which orders the complex data by their absolute values. The
objective function is unconditional to the source distribution other
than the circularity and it measures the statistical independence di-
rectly from the data. Using this objective function, a nonparamet-
ric complex independent component analysis algorithm can be de-
rived. Also, the generalization of this objective function allows it
to be combined with other algorithms to increase their separation
performances. Experiments demonstrate the usefulness of the new
objective function.

Index Terms— Array signal processing, multidimensional sig-
nal processing, frequency domain analysis

1. INTRODUCTION

Independent component analysis (ICA) is a well-known algorithmic
method for separating statistically independent, or as independent as
possible, source signals from their mixtures [1–3]. In the simplest
form of the analysis, the model is an instantaneous mixture as

x[n] = As[n], n = 1, 2, · · · , N (1)

where x[n] (= [x1[n], x2[n], ...]T) , s[n] (= [s1[n], s2[n], ...]T),
andA are the observation vector, the vector of mutually independent
sources, and the mixing matrix, respectively. Here, we assumeA to
be square and invertible. The output we learn is denoted by y[n]
(= [y1[n], y2[n], ...]T) and is obtained by

y[n] = Wx[n], n = 1, 2, · · · , N (2)

whereW is the estimate ofA−1 and is called the unmixing matrix.
While learning the unmixing matrix, most ICA algorithms regard
each source signal si[n], n = 1, 2, · · · , N asN sampled data points
of a random variable that follows certain probability distribution.

In the case when each source distribution is known and can be
well represented by a function, e.g. Laplace distribution for speech
signal, robust and simple ICA algorithms can be derived from maxi-
mum likelihood perspective. The prior information about the source
distribution is brought in to the objective function, a.k.a. contrast,
by nonlinearity functions where the corresponding source distribu-
tion is called source prior or source target. In many cases, however,
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it is certain that strong characterization of the source distributions is
unavailable and an improper source target can result in poor separa-
tion result.

Instead of likelihood-equivalent contrasts, there are several ICA
algorithms for real-valued variables that use more generalized con-
trasts. FastICA [4, 5], JADE [6], KernelICA [7], nonparametric
ICA [8], order statistics based ICA [9], and RADICAL [10] are
such algorithms. FastICA and JADE use some estimated measures
of non-Gaussianity and fourth-order moments, respectively. Ker-
nelICA and nonparametric ICA can be regarded as tracking the un-
known marginal densities of the data using kernel density estima-
tion and updating the likelihood-like contrasts in each iteration by
changing the source target accordingly. Order statistics based ICA
and RADICAL use mutual information directly as their contrasts by
using an order statistics based density estimator.

For circular complex variables, there are also several ICA algo-
rithms that are blindly applicable to a wide range of source types,
such as JADE and complex FastICA [11]. While JADE solves most
2 × 2 mixture problems, however, its performance degrades con-
siderably when the number of mixed sources increases and also it
is unable to separate sources with very small kurtoses. Complex
FastICA is basically derived from a likelihood contrast with a xed
source target but nevertheless, it separates not only the source of the
corresponding type but also a variety of sources of the other types.
However, it occasionally nds some stationary points that are not the
global optima.

Here, we propose a new nonparametric objective function for
nonparametric complex ICA algorithms. This is an extension of or-
der statistics based nonparametric ICA [9, 10] from real variables to
complex variables. It is unconditional to the two-dimensional source
distributions other than the circular dependency and has a variety of
applications. With the given objective function, we derive a non-
parametric complex ICA algorithm and show its usefulness and ef -
ciency by simulation results.

2. ICA USING ORDER-STATISTICS BASED ENTROPY
ESTIMATION

As mentioned earlier, there are generalized ICA algorithms that di-
rectly optimize a measure of the total statistical independence, the
well-known mutual information,

I(y) = KL(fy||
∏

i

fyi), (3)

where fy and fyi denote the joint density function and i-th marginal
density of the output vector y, respectively. This is done via or-
der statistics based entropy estimation. From a given sample of N
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variates x[1], x[2], · · · , x[N ] and its reordered set of x̄[n]’s, n =
1, 2, · · · , N such that x̄[1] ≤ x̄[2] ≤ · · · ≤ x̄[N ], x̄[j] is called
the j-th order statistic. Using this, the probability density function
(PDF) and the corresponding entropy of each random variable are
estimated in simple forms [12, 13].

While D.-T. Pham rst derived a nonparametric ICA algorithm
using such entropy estimator with the order of spacing 1 [9], it was
improved in RADICAL [12] to be more consistent and ef cient by
changing the spacing of order tomN , a function of the data size N ,
and also by allowing overlaps of the spacing [10]. The contrast of
RADICAL is as simple as

min
W

∑
i

N−mN∑
n=1

log(ȳi[n + mN ] − ȳi[n]) (4)

where ȳi[n]’s denote the reordered set of the output data yi[n], n =
1, 2, · · · , N such that

ȳi[n] < ȳi[n + 1], ∀i, n = 1, 2, · · · , N−1. (5)

3. EXTENSION OF RADICAL FROM REAL VARIABLES
TO COMPLEX VARIABLES

Density estimation using order statistics is not directly applicable to
complex variables if the contour of its joint PDF in �2 is unknown.
In signal processing, we usually regard complex variables to live
on circles, that is, we assume circularity. This assumption makes
such density estimation for complex random variables feasible since
then we can apply order statistics to complex-valued data by their
absolute values, or the Euclidean distances from their center in �2.
This is depicted in Fig. 1.
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Fig. 1. How we apply order statistics to circular complex variables
is depicted. The (zero-mean) complex data y[1], y[2], · · · , y[N ] are
ordered as ȳ[1], ȳ[2], · · · , ȳ[N ] such that abs(ȳ[1]) < abs(ȳ[2]) <
· · · < abs(ȳ[N ]).

Since independence implies no correlation, many ICA algorithms
keep the output data y[n] to be zero-mean and white (E[yyH ] = I)
by prewhitening x[n] and constrainingW to be orthogonal (WWH =
I) mostly for fast learning and better performance (See [14]). For
convenience, we will assume y[n] to be zero-mean and white from
here on.

After introducing the differential entropy function of a random
vector v, which is de ned as

H(v) = −
∫
�dim(z)

fv(z) log fv(z)dz, (6)

it can be shown that

I(y) =
∑

i

H(yi) − H(y), (7)

not only for real-valued yi’s but also for complex-valued yi’s (See
[15]). Note that, in complex case, yi in H(yi) should be regarded as
a real-valued two-dimensional vector (yi). Since H(y) on the right-
hand-side of (7) is a constant value with respect to orthogonal W,
with the constraint of orthogonalW it holds that

arg min
W

I(y) = arg min
W

∑
i

H(yi). (8)

The entropy term in (8) can be replaced with an entropy esti-
mator. As previously discussed, we will apply order statistics to
the complex-valued data by their absolute values in order to derive
an entropy estimator for circular complex variables. Let’s de ne
r̄i[n] and ȳi[n] (n = 1, 2, · · · , N) as the rearranged |yi[n]| and
yi[n] (n = 1, 2, · · · , N), respectively, such that

r̄i(n) < r̄i(n + 1), n = 1, 2, · · · , N − 1, (9)
r̄i(n) = |ȳi(n)|, n = 1, 2, · · · , N. (10)

Now we can follow the derivation of one-dimensional entropy
estimator in [10] and derive an entropy estimator for circular com-
plex random variables. For simpler notation, we will omit the sub-
script i while deriving the entropy estimator.

Let FR(·) be the cumulative distribution function that r̄, or |y|,
follows. Since FR(r̄) is uniformly distributed in [0, 1], it can be
easily shown that

E [FR(r̄[n+1] ) − FR(r̄[n] ) ] =
1

N+1
, n = 1, · · · , N−1. (11)

Exploiting this idea, we approximate fy(·) as the following. We
equally assign 1

N+1
to each probability mass of the circular inter-

val between two successive r̄(n)’s and assume that each probability
mass is uniformly distributed in the area that lies in each interval.
Then

f̂y(z) =
1

N+1

π(r̄[n+1]2 − r̄[n]2)
, r̄[n] ≤ |z| < r̄[n+1]. (12)

An example of the PDF estimator is depicted in Fig. 2. In the
gure we assumed four data points that correspond to r̄[j] = j, j =

1, 2, 3, 4, and we arbitrarily added two end points of the support such
that r̄[0] = 0 and r̄[5] = 5.

Now we can write

H(y)

= −
∫
�(z)

∫
�(z)

fy(z) log fy(z)d�(z)d�(z) (13)

= −
∫

r

2πrfy(z) log fy(z)dr (14)

= −2π

N∑
n=0

∫ r̄[n+1]

r̄[n]

rfy(z) log fy(z)dr (15)

≈ −2π

N−1∑
n=1

∫ r̄[n+1]

r̄[n]

r
π(N+1)

r̄[n+1]2−r̄[n]2
log(

1
π(N+1)

r̄[n+1]2−r̄[n]2
)dr (16)

= ca

N−1∑
n=1

log(r̄[n+1]2− r̄[n]2) + cb (17)
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Fig. 2. A PDF estimated by the density estimator for circular com-
plex random variables (12) where r̄[i] = i, i = 0, 1, · · · , 5, and
r̄(0) and r̄(5) correspond to the end points of the support.

where �(z) and �(z) are respectively the real and imaginary parts
of the complex variable z. Also r = |z|, and ca and cb are (and will
be) used to denote some constants whose values are not important.
The approximation in (16) comes from replacing fy(y) with f̂y(y) in
(12) and from removing the sum for n equaling 0 and N since the
end points of fy(y)’s support, r̄(0) and r̄(N), are usually unknown.

In order to smoothen and reduce the variance of the estimator,
two additional steps will be taken. First, we change the order of
spacing from 1 tomN , which results in

Ĥ(y; j) = ca

∑
n=1

log(r̄[mNn+j]2−r̄[mN (n−1)+j]2)+cb

j = 1, 2, · · · , mN . (18)

Note that there are mN different entropy estimators with respect to
the choice of the rst datum of the spacing. Second, we take the
arithmetic mean of all of the shifted entropy estimators in (18) to
obtain the following simple but consistent entropy estimator

Ĥ(y) =
1

mN

mN∑
j=1

Ĥ(y; j) (19)

= ca

N−mN∑
n=1

log(r̄[n+mN ]2 − r̄[n]2) + cb. (20)

Plugging the entropy estimator in (20) into the entropy term on
the right-hand-side of (8), we obtain the following objective function
with the constraint ofW being orthogonal;

Wopt = arg min
W

∑
i

N−mN∑
n=1

log(r̄i[n+mN ]2 − r̄i[n]2). (21)

As a simple extension of RADICAL, this contrast inherits the
advantages, i.e. consistency and ef ciency. For this, the following
conditions should hold (See [10, 12, 13]);

mN , N → ∞,
mN

N
→ 0. (22)

It is typical formN to be
√

N .

4. APPLICATIONS AND EXPERIMENTS

Now, we can use the new contrast in (21) to separate independent cir-
cular complex signals from their mixtures. Note that instantaneous
mixtures of independent circular complex variables are also circular
and hence our measure of mutual independence is still applicable to
their mixtures. By following the notations in [16] and de ning wi

to be the i-th row of W, we derive the following gradient descent
update rule;


wi∝− ∂

∂(wi)∗
∑

i

N−mN∑
n=1

log(r̄i[n+mN ]2−r̄i[n]2) (23)

=

N−mN∑
n=1

ȳi[n+mN ](x̄i[n+mN ])H−ȳi[n](x̄i[n])H

r̄i[n+mN ]2−r̄i[n]2
. (24)

where x̄i[n]’s are the ordered x[n]’s such thatwix̄i[n] = ȳi[n].
Because our contrast is based on order statistics and thus is a

function of ordered data where the order easily changes after each
update, it has a large number of potential local optima. Hence the
gradient descent update rule does not guarantee convergence on the
global optimum. While RADICAL employs an exhaustive rotational
search, here, for our algorithm, we propose the following exhaustive
search that uses the gradient descent update in (24).
1. Starting from a big learning rate,W is being updated by gra-
dient descent and theW that results in the smallest value for
the contrast is kept track of.

2. The learning rate is reduced and the update ofW starts over
from the one that resulted in the smallest contrast value in the
previous step.

3. 2) is repeated.
Note that,W is constrained to be orthogonal and the data set is

resorted after every update. The performance of the nonparametric
complex ICA algorithm is tested with synthetic data. For each inde-
pendent source signal, we chose 10000 complex-valued data points
that are uniformly distributed along circles in�2. Simple 2×2 prob-
lems were generated by mixing those source signals with a randomly
generated mixing matrix A. Here, we will show examples when our
algorithm outperforms complex JADE and complex FastICA.

First, while complex JADE failed in identifying circular com-
plex signals with small kurtoses from their mixtures, the nonpara-
metric complex ICA algorithm separated them very well. Second,
we could nd cases where complex FastICA frequently found the
wrong stationary points and the new algorithm did not fail. This is
shown in Fig. 3 by scatter plots. The scatter plots of the arbitrarily
generated independent source data, the mixtures of the source data,
the wrong separation result of complex FastICA, and the separation
result of the nonparametric complex ICA algorithm are respectively
shown in (a), (b), (c), and (d). While complex FastICA resulted in
wrong output signals as in Fig. 3(c) 33 times out of 100 trials, non-
parametric ICA found the sources correctly as in Fig. 3 (d) all 100
times.

Although the nonparametric complex ICA algorithm shows ex-
cellent separation results for circular complex signals, the search is
exhaustive and also it is still possible that the algorithm misses the
correct answer during its search. Another way to use the new objec-
tive function is to compare the results of one or various algorithms
with respect to the values of the nonparametric independence mea-
sure and then choose the best answer. For example, the new objec-
tive function can complement the performance of complex FastICA
which sometimes nds the wrong optima as in our experiment.
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Fig. 3. The separation results of complex FastICA and nonparamet-
ric complex ICA are compared. The scatter plots of the arbitrar-
ily generated independent source data, the mixtures of the source
data, the typical wrong separation result (33 times out of 100 trials)
of complex FastICA, and the separation result of the nonparametric
complex ICA algorithm are respectively shown in (a), (b), (c), and
(d)

5. DISCUSSION

For the derivation of the new objective function, we assumed circu-
lar symmetry for the complex variables. Since the complex-valued

frequency components of a time-domain signal show circularity, the
objective function is applicable to any time-domain signal in the fre-
quency domain. Also, the objective function can easily be extended
to even higher dimension where the multidimensional variables have
the property of spherical invariance, e.g. the frequency components
of some natural signals including speech. Such an application can
be seen in [17].
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