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ABSTRACT
Existing blind source extraction (BSE) methods are limited to
noise-free mixtures, which is not realistic. We therefore address
this issue and propose an algorithm based on the normalised kur-
tosis and a nonlinear predictor within the BSE structure, which
makes this class of algorithms suitable for noisy environments,
a typical situation in practice. Based on a rigorous analysis of
the existing BSE methods we also propose a new optimisation
paradigm which aims at minimising the normalised mean square
prediction error (MSPE). This makes redundant the need for pre-
processing or orthogonality transform. Simulation results are
provided which con rm the validity of the theoretical results
and demonstrate the performance of the derived algorithms in
noisy mixing environments.
Index Terms— Blind source separation, blind source ex-

traction, adaptive nonlinear prediction, noisy mixtures

1. INTRODUCTION

Recently, due to its wide potential application in the areas in-
cluding biomedical engineering, sonar, radar, speech enhance-
ment, telecommunications, blind source separation (BSS) [8]
has been studied extensively and has become one of the most
important research topics in the signal processing area [3, 4, 2].
This is a technique which aims at recovering the original sources
from all kinds of their mixtures, without the knowledge of the
mixing process and the sources themselves. In blind source
separation process, there are n sources s1(k), s2(k), . . . , sn(k),
which are passed through an unknownmixing systemwith added
noise; bym sensors we acquire the received mixed signals x1(k),
x2(k), . . . , xm(k). With appropriate separation algorithms, the
original signals are then separated from their mixtures subject to
the ambiguities of permutation and scaling. For instantaneous
mixing, the mixtures are modelled as weighted sums of individ-
ual sources without dispersion or time delay, given by

x(k) = A · s(k) + vn(k), (1)

with [A]i,j = ai,j , i = 1, . . . , m, j = 1, . . . , n, vn(k) is the
noise vector and A is the mixing matrix. We normally assume
that the sources are zero-mean and the elements of vn(k) are
white Gaussian and independent of the source signals.
In general, by BSS we obtain all the n sources simultane-

ously, but we can also choose to extract a single source or a sub-

set of sources from their mixtures and repeat this process until
we extract the last source or the last desired one from a subset
of sources [7, 1, 11, 9, 10]. The BSS approach operating in this
way is also called blind source extraction (BSE) [2]. Compared
to the general simultaneous BSS for multiple sources, BSE pro-
vides us with more freedom in separation. We can design and
employ different algorithms at different stages of the extraction,
according to the features of the source signal we want to ex-
tract at a particular stage. By extracting only the set of signals
of interest, we also save much of the unnecessary computation,
especially when the spatial dimension of observed mixtures is
large and the number of signals of interest is small.
This paper proposes an improvement on the existing BSE

algorithms and provides ef cient solutions for BSE of instanta-
neous noisy mixtures. Based on a rigorous analysis of the nor-
malised mean square prediction error (MSPE) for a linear pre-
dictor based BSE method for noisy mixtures [10], we propose a
novel higher-order statistical method based on the minimisation
of normalised mean square nonlinear prediction error. This ap-
proach does not require prior knowledge of the noise variance,
unlike methods for BSE of noisy mixtures, based on the removal
of noise term directly from the cost function.

2. BLIND SOURCE EXTRACTION FOR NOISY
MIXTURES

A general structure of the BSE process for extracting one single
source at a time is shown in Fig. 1; where there are two princi-
pal stages: extraction and de ation [7]. The original mixtures
rst undergo the extraction stage to have one source recovered;
after de ation, the effects of the extracted source are removed
from the mixtures. These new ”de ated” mixtures then undergo
the next extraction process to recover the second source; this
process repeats until the last source of interest is recovered.

2.1. BSE with a Nonlinear Predictor in Noisy Environments

In a noisy environment, to extract one of the sources, we apply
a demixing operation, given by w, which yields

y1(k) = wT
1 x1(k) = gT

1 s1(k) + wT
1 vn1(k) (2)

where gT
1 = wT

1 · A.
For independent sources, Liu et al. [10] proposed to remove

the effect of noise by manipulating the cost function, based on
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Fig. 1. A general structure of the blind source extraction (BSE).

Fig. 2. A structure of the nonlinear predictor.

an estimate of the variance of this noise. The cost function used
had the same generic form as that for the noise-free case, but the
method required some prior knowledge of the noise variance.
More speci cally, as the kurtosis of a Gaussian random variable
is zero, the kurtosis of an extracted signal, kt(y1(k)) will be the
same as in the case with zero noise. Therefore, it is convenient
to apply normalised cost function

C1(w1) = − βkt(y1)
4(E{y2

1})2
, (3)

where β = 1 for the extraction of source signals with positive
kurtosis and β = −1 for sources with negative kurtosis. For a
zero-mean random variable y1, the kurtosis is de ned as [3]

kt(y1) = E{y4
1} − 3(E{y2

1})2 , (4)

where E{·} denotes the statistical expectation operator. Notice
however that kurtosis based algorithms are only applicable to
independent non-Gaussian sources (or at most one Gaussian).
We can therefore work towards relaxing this condition; consider
the case with temporally correlated sources, including Gaussian
ones. More speci cally, assume

Rss(0) = E{s(k)sT (k)}
= diag{ρ0(0), ρ1(0), . . . , ρn−1(0)}, (5)

with ρi(0) = E{si(k) · si(k)}, i = 0, 1, . . . , n − 1, and
Rss(Δk) = E{s(k)sT (k −Δk)}

= diag{ρ0(Δk), ρ1(Δk), . . . , ρn−1(Δk)} (6)
with ρi(Δk) �= 0 for some nonzero delayΔk.
To circumvent problems associated with a linear predictor

(and associated Gaussianity [6]) within standard BSE structure,

following the practice from radar and laser research, one conve-
nient way to deal with the noisy cases would be to employ a non-
linear predictor [5] within the BSE structure as shown in Fig. 2,
where the weighted sum y1(k) = wT

1 · x1(k) is passed through
a nonlinear predictor with a length P . In Fig.2, a standard ex-
traction process with extracting coef cients w1(k) is used in the
rst step to extract one signal (denoted by y1(k)) from the mix-
ture x1(k). In the next step, a nonlinear adaptive nite impulse
response (FIR) lter with coef cients b1(k) and nonlinearity Φ
is used to assist the extraction. The use of nonlinear predictor is
particularly important to support the extraction process in elim-
inating the effects of the remaining noise [5]. In Fig.2, the lter
output ỹ1(k) is an estimate of the extracted signal y1(k) and the
lter nonlinearity Φ(·) is typically a sigmoid function. The es-
timation of the extracted signal y1(k) is naturally accompanied
by a prediction error, de ned by

e1(k) = y1(k)− ỹ1(k)

=
m∑

i=1

xi(k)w1i(k)

−Φ
(

P∑
p=1

b1p(k)
m∑

i=1

xi(k − p)w1i(k − p)

)
(7)

where, for convenience, Φ(k) stands for Φ(bT
1 (k)w1(k)).

To adjust the lter coef cients b1(k) = [b11(k), b12(k), . . .
, b1p(k)]T , tap-delayed output y1(k) = [y1(k − 1), y1(k −
2), . . . , y1(k − P )]T and the extracting coef cients w1(k) =
[w11(k), w12(k), . . . , w1m(k)]T , we derive a gradient descent
algorithm, which is based on minimisation of the normalised
nonlinear prediction error e1(k). We therefore de ne the cost
function for the BSE based on the structure from Fig.2 in terms
of the normalised mean squared prediction error (MSPE) as

C1(w1) =
E{e2

1(k)}
E{y2

1(k)}
. (8)

where

E{y2
1(k)} = wT

1 Rxx(0)w1

= wT
1 ARss(0)ATw1 (9)

Rewriting (7), the MSPE E{e2
1(k)} can be expressed as1.

E{e2
1(k)}

= [y1(k)− ỹ1(k)]
2

=

[
m∑

i=1

xi(k)w1i(k)− Φ(
P∑

p=1

b1p(k)

m∑
i=1

xi(k − p)w1i(k − p))

]2

(10)

By minimizing the cost function C1(w1) with respect to the
demixing vector w1, the global demixing vector g1 = wT

1 · A
tends to have only one nonzero element and consequently only
the source signal with the smallest normalised MSPE for the
nonlinear predictor b will be extracted [6].

1More detail and justi cation can be found in [5]. Due to the space limitation
the full analysis is not presented.
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To derive a gradient descent adaptation for every element
b1p(k), p = 1, 2, . . . , P of the lter coef cient vector b1

and every element w1i(k), i = 1, 2, . . . , m of the extracting
coef cient vector w1 we have

b1p(k + 1) = b1p(k)− μb∇b1p
C1(w1(k),b1(k)) (11)

where μb is the learning rate for the adaptation of b1.
The updates for the lter and the extracting coef cients now

become

b1p(k + 1) = b1p(k) + μb(k)e1(k)Φ′(k)y1(k − p) (12)

which can be expressed in the vector form as

b1(k + 1) = b1(k) + μb(k)e1(k)Φ′(k)y1(k) (13)

where the Φ′(k) denotes its derivative at time instant k.
Applying the standard gradient descent method to minimise

C1(w1), and using some stochastic approximations, we can ob-
tain the following online update equation [10]

w1(k+1) = w1(k)− μw

σ2
y(k)

(
e1(k)x̂1(k)− σ2

e(k)
σ2

y(k)
y1(k)x1(k)

)
,

(14)
where μw is the learning rate, βe and βy are the corresponding
forgetting factors.

σ2
e(k) = βeσ

2
e(k − 1) + (1− βe)e2

1(k) ,

σ2
y(k) = βyσ2

y(k − 1) + (1− βy)y2
1(k) , (15)

In de ation, the new de ated mixtures become

x̂1(k) = x1(k)−
P∑

p=1

b1px1(k − p) , (16)

This completes the derivation of the proposed BSE algorithm
for extracting noisy signals.

2.2. Simulations

Fig. 3(a) shows three source signals, denoted by s1 with bi-
nary distribution, s2 with Gaussian distribution and s3 a random
waveform, where used in simulations. The signals s1 and s2

have positive kurtosis (β = 1). The length P = 3 nonlinear pre-
dictor is adopted in this experiment. Monte Carlo simulations
with 5000 iterations of independent trials were performed. This
way, the normalised prediction errors of the three signals were
respectively {9.5492, 10.1327, 10.3047}. The 3×3mixing ma-
trix A was randomly generated and is given by

A =

⎡
⎣ 0.4974 −0.1222 0.9032
0.2462 −0.6966 0.6442
0.7976 0.3492 0.3445

⎤
⎦ . (17)

To further illustrate the proposed approach, the variance of the
noise in (1)was set σ2

vn = 0.1. By minimising the normalised
MSPE, we expect the signal with the smallest normalised pre-
diction error to be extracted, which is the rst signal s1. The
forgetting factors were βe = βy = 0.1 and the stepsize μw =

signal 1 signal 2 signal 3
Original Signal 1.0006 1.8105 2.7771
Noisy Mixture 2.4427 2.0387 2.4247

MPSE Linear Predictor [10] 2.3986 2.4727 1.6847
Proposed BSE 1.0611 1.0204 2.7663

Table 1. Kurtosis of the original sources and the kurtosis of the
extracted signals using the proposed method and the normalised
MPSE linear predictor method [10].

μb = 0.0017. The learning curve for this case is shown in Fig. 4
for both the proposed nonlinear predictor and the normalised
MSPE [10], with the performance index de ned as [2]

PI = 10 log10

(
1

n − 1(
n−1∑
m=0

g2
m

max{g2
0 , g2

1 , . . . , g2
n−1}

− 1)
)

,

(18)
with g = ATw = [g0 g1 · · · gn−1]. As the performance index
reached the level of around −16 dB, we can say the signal s1

had been extracted successfully.
The waveform of the sequentially extracted signal by the

proposed nonlinear predictor method is given in Fig.3(b). Based
on the smallest predictor error, the proposed nonlinear predictor
rst extracted s1 with binary distribution, followed by s2 a ran-
dom waveform and then s3 with Gaussian distribution. These
three extracted matched closely with the original source signals.
If, instead of the proposed nonlinear predictor, the standard nor-
malised MSPE [10] approach was used, it was unable to give
satisfactory extraction performance, as shown in Fig.3(c). In
addition, it can be seen that the proposed blind extraction algo-
rithm provides, in general, better kurtosis matching of source
and output signals (Table I).
To further illustrate the qualitative performance of the pro-

posed approach, scatter plots of the original sources and the re-
covered output signals are displayed in Fig.5. These scatter plots
show the degree of independence between the outputs, where
each point on the diagram corresponds to one data vector. Con-
forming with the above results, the extracted output signals us-
ing the proposed method outperformed the normalised MSPE
[10] based extraction.

3. CONCLUSIONS

We have addressed a special class of blind source separation
(BSS) algorithms, namely blind source extraction (BSE), by which
we can recover a single source or a subset of sources each time,
instead of recovering all of the sources simultaneously. We have
studied the BSE problem in noisy environments and proposed a
new BSE algorithm based on minimisation of mean square non-
linear prediction error. Unlike the existing algorithms for noisy
BSE, which remove the effects of noisy directly from the cost
function, this approach does not require the knowledge of noise
variance, or any preprocessing. Simulations have shown that the
proposed algorithm can perform satisfactory extraction of the
corresponding sources from noisy mixtures.
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Fig. 3. Source signals used in simulations: (a) The original source signals, s1 with binary distribution, s2 a Gaussian distribution and
s3 with random waveform; (b) The extracted output signals based on nonlinear predictor, s1 with binary distribution, s2 a random
waveform and s3 with Gaussian distribution; (c) The extracted output signals based on normalised MSPE linear predictor, s1 with
random waveform, s2 a random waveform and s3 with Gaussian distribution;

Fig. 4. The performance index using the proposed nonlinear
predictor and normalised MPSE linear predictor [10].

Fig. 5. Scatter plots comparing the independence level of the
extracted signals.
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