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ABSTRACT

We generalize the non-negative matrix factorization (NMF)
generative model to incorporate an explicit offset. Multiplica-
tive estimation algorithms are provided for the resulting spar-
se af ne NMF model. We show that the af ne model has
improved uniqueness properties and leads to more accurate
identi cation of mixing and sources.

Index Terms— Non-negative matrix factorization, NMF,
BSS, Sparse NMF

1. INTRODUCTION

Non-negative matrix factorization (NMF) has become a pop-
ular tool for data analysis. An often stated reason for NMF is
that it leads to ‘parts based’ representations, hence, facilitates
data analytic interpretation. However, uniqueness is impor-
tant for the parts based representations to be meaningful. The
NMF generative model is based on linear mixing of positive
sources by positive coef cients. The positive sources may
have offsets which can lead to non-uniqueness, we therefore
here propose a model based on af ne mixing, i.e., mixing with
an offset. The NMF learning algorithm is straightforwardly
generalized to handle the augmented model. We show that
the af ne model indeed has improved uniqueness properties
and thus leads to more accurate identi cation of mixing and
sources.

NMF algorithms are used to factorize a nonnegative ma-
trix V ∈ R

N×M in two nonnegative matrices W ∈ R
N×D

and H ∈ R
D×M

V ≈ R = WH; Vi,j ≈ Ri,j =
D∑

d=1

Wi,dHd,j (1)

Following the seminal papers by Lee and Seung [1, 2], a least
squares or a Kullback-Leibler inspired cost are used. Our ob-
servations in this paper can be applied to both. For simplicity
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we will concentrate on the Euclidian cost in the following,

E(W, H) = ‖V −WH‖
2
F , (2)

where ‖·‖F is the Frobenius norm. Lee and Seung[2] have
shown that the following update rule will decrease E(W, H)

H ← H ⊗
WT V

WT R
(3)

W ← W ⊗
V HT

RHT
, (4)

where⊗ and (·)
(·) are element wise multiplication and division.

This update rule is used as a reference and is shown in panel
(B) of gures 1, 3, 4, 5 and 6.

2. SPARSE NMF

Hojer [3] introduced sparse NMF and Eggert[4] proposed the
following cost function where only the normalized version of
W has impact on the cost

E(W, H) =
1

2

∥∥V −WH
∥∥2

F
+ λ1

T H1 (5)

Wn =
Wn

‖Wn‖
, n ∈ {1, . . . , N} (6)

where Wn is the n’th column vectorin W and 1 is a column
vector where all elements are one. The length of 1 can be
deduced by the context. The scalar λ is a positive parameter
that controls the tradeoff between sparseness of H and ap-
proximation of V by the product of W, H . Eggert[4] argues
for using the following multiplicative update

H ← H ⊗
WT V

WT R + λ
(7)

Wn ← Wn ⊗

∑M

m=1 Hm,n(Vn + Wn(Rm)T Wn)
∑M

m=1 Hm,n(Rn + Wn(Vm)T Wn)
(8)

These update rules are used in panel (C) of gures 1, 3, 4, 5
and 6.
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The normalization of W and the sparse nature of H criti-
cally constrains the solution and can improve uniqueness and
lead to more accurate estimates. However, the constraints
may not be consistent with the form of the mixing process
and the statistics of the source signals H . In particular offsets
in one or more rows of V will counteract the sparse model. If
the generative model incorporates additive noise it is not clear
that simple subtraction of the minimal value of each row in V

will lead to a correct recovery of the generating W, H . If the
noise is, e.g., Gaussian, V can be negative in the native repre-
sentation, hence, one cannot estimate the ‘true’ offset.

2.1. Af ne Sparse NMF

The above sparse NMF methods do not handle offsets, how-
ever, it is incorporated as follows with W0 ∈ R

N×1

V ≈ R = WH + W01
T . (9)

Using this augmented signal model the sparse cost function
in Equation 5 becomes

E(W, H, W0) =
1

2

∥∥V −WH−W01
T
∥∥2

F
+ λ1

T H1 (10)

Following Eggert[4] the update rule for W and H remains as
given in Equation 7 and 8 using the new de nition of R and
the update rule for W0 (that in not normalized) is the standard
NMF update rule in Equation 4

W0 ← W0 ⊗
1

T V

1T R
(11)

The af ne sparse NMF results are shown in panel (D) of g-
ures 1, 3, 4, 5 and 6.

3. RESULTS

How does the augmented sparse af ne NMF model data? To
answer this question we rst visualize synthetic data as gen-
erated by the proposed model, and we show existing meth-
ods fail to reconstruct the correct parameters of the genera-
tive model. We then go on to show that two commonly used
data sets have the characteristics of the proposed model and
that the proposed algorithm performs better than the existing
algorithms on the data. In order to get a ‘fair’ comparison the
standard NMF and sparse NMF both have one column more
than the sparse af ne NMF method. This ensures that the
maximum rank of R is the same for all methods.
Simulated Data. In Figure 1 there are M = 2000 el-

ements in V . The data is generated as in Equation 9. The
elements of R are exponentially distributed. The true W vec-
tors and the column vectors of V are shown in Figure 1 panel
(A). Figure 1 (B–D) shows the three different algorithms esti-
mate of W . The standard NMF (B) nds W such that the data
is in the positive span of W . The W estimated by the sparse
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Fig. 1. Simulated data where V ∈ R
2×2000 is generated ac-

cording to Equation 9. Each column of V is plotted as a dot.
In (A) the generating W and W0 are shown. In (B) and (C)
the standard NMF and sparse NMF each nd three vectors
that can describe the data. Both algorithms nd one vector
that is a linear combination of the true W0 and W1 and nds
two vectors that are very close to the true W0. In (D) the
‘Af ne sparse NMF’ method correctly estimates the structure
of the W matrix.

NMF algorithm (C) also spans data but the column vectors of
W point more directly towards data. Although these methods
estimated W can reproduce V , they do not nd the correct
structure (W ). The proposed method (D) nds a W that is
close to the true W .

A quantitative evaluation of the different algorithms’ esti-
mate is presented in Figure 2. Data is generated as in Equa-
tion 9 where the elements of W and W0 are uniform i.i.d.
The elements of H are rst generated as exponential i.i.d.
samples and then each column is normalized to unit sum.
In this way the elements in H describe how much each col-
umn vector of W contribute towards V . In all simulations
N = 100, D = 10. We have run the simulation with different
amounts of data examples (column in V ) M . In the evaluation
V is analysed as 11(=D +1) outer product

∑D

d=0 V (d) = V ,
where V

(d)
i,j = Wi,dHd,j . The error in the gure is the relative

least squares error of the V (d) estimate for each data set size
∑D

d=0

∥∥V (d) −R(d)
∥∥2

F∑D

d=0

∥∥V (d)
∥∥2

F

(12)

For completeness we have included in the performance eval-
uation a modi cation of the standard method in which data
is rst subtracted with constant offsets to achieve zero mini-
mum value in each of the N variables of V . The simulation

II ­ 654



20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 # exampels

Es
tim

at
io

n 
Er

ro
r

Standard
Sparse
Zero Offset Standard
Zero Offset Sparse
Affine Sparse

Fig. 2. The variation of the relative least squares error of the
NMF reconstruction of W . The error is plotted as a function
of the amount of data (M ). The simulated data was generated
using D = 10 components and an off set. The ‘zero offset’
methods are based on the simple heuristic that data is rst
preprocessed to have minimum value zero in each row.

shows that the standard NMF and the sparse NMFs do not nd
the true W and H . The constant offset subtraction improves
the performans but is outperformed by the sparse af ne NMF
succeeds. Notis that the two latter methods is favoured by
knowing that (HT )0 = 1.
The Swimmer Database. The “Swimmer Database” was

introduced by Donoho and Stodden [5] to discuss the unique-
ness issues we have adressed in this presentation. The point
was that even if NMF can represent V it may not necessarily

nd the right W . The database consist of 256 (32× 32 pixel)
black-and-white pictures of a ‘stick-man’ with 4 limbs that
can be in one of 4 positions. All pictures have a ‘torso’ that
represent an offset as discussed in this paper. The pictures
in the dataset can be constructed by 17 (= 4 × 4 + 1) non-
overlapping basis pictures. In Figure 3 (A) examples from the
database are shown. The algorithms described in section 2 are
tested on the data set and a subset of the 17 basis pictures are
shown in Figure 3(B–D). Only the proposed method is able to

nd the 17 non-overlapping basis pictures, the standard NMF
and Sparse NMF all let the torso be a part of all basis pictures.
The Swimmer simulation is further analyzed in Figure 4. The
1024 (= 32 × 32) dimensional column vectors in V and W

are mapped onto a two dimensional subspace to show that the
structure of the swimmer database is in fact equivalent to that
of Figure 1. In the plot it is seen that only the af ne sparse
NMF nds the true basis vectors.
Business Card Data Set. Our nal example is based on

a set of business card images of faculty of Aalborg Univer-
sity’s Department of Electronic Systems. The photographer

(A) (B)

(C) (D)

Fig. 3. Subset of A: The Swimmer database B: Basis pictures
using standard NMF. C: Basis pictures using sparse NMF. D:
Basis pictures using sparse af ne NMF.

0 1
0

1

(A)
0 1

0

1

(B)

0 1
0

1

(C)
0 1

0

1

(D)

Fig. 4. A two dimensional subspace of the column vectors
in V (dots) and W (vectors) are shown for the Swimmer
database. The ‘x-axis’ is a picture which is zero in the up-
per part and uniform random values in the lower part. The
‘y-axis’ is constructed the same way but with the zeros in the
lower part.

has manually centered and scaled the pictures. The pictures
are scaled to 30 × 40 pixel and the color map is chosen such
that white is zero and black is maximum. An ‘AAU water-
mark’ logo has been added to all pictures in the database. A
subset of the pictures are shown in Figure 5(A) and a subset
of the 25 basis pictures estimated by the three algorithms is
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Fig. 5. (A): Subset of the Picture database with 197 pic-
tures (B – D): A subset of the basis pictures using standard
NMF, sparse NMF and sparse af ne NMF. The standard NMF
makes very noisy basis pictures. The sparse NMF produce ba-
sis pictures where the ‘AAU watermark’ is visible in around
50% of the pictures, and in addition a lot of the pictures do
not represent a single part of the picture. The sparse af ne
NMF has only one picture with the watermark (W0) and most
pictures represent only one part of the picture.

shown in Figure 5(B–D). In this simulation the sparse af ne
NMF algorithm estimates more sparse basis pictures and most
basis pictures describe one physical object only.

A two dimensional subspace (axes formed by a picture
with ‘hair’ and an picture with the AAU-logo) of the images
in Figure 5 are shown in Figure 6. As above we nd that none
of the standard NMF’s nor sparse NMF basis vectors describe
the AAU logo without also capturing ‘hair’. The basis pic-
tures for the proposed method however are found close to the
axes meaning that they either capture hair or the AAU’ logo.

4. DISCUSSION AND CONCLUSION

Non-negative matrix factorization is widely applied because
of the ability to create ‘parts based’ representations, hence,
facilitating model interpretation. However, uniqueness is im-
portant for the parts based representations to be meaningful.
Lack of uniqueness can happen in several ways, e.g., due to
an offset vector W0 as discussed here. Another mechanism
resulting in lack of uniqueness is if the support of the process
creating a row of H does not include H = 0, i.e., if there is
an offset in the row variable of H . The H0 offset can be seen
as a W0 offset with the constraint that W0 is in the positive
span of the column vectors in W

R = W (H + H01
T ) = WH + W01

T , W0 = WH0 (13)
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Fig. 6. The business card images plotted in two dimensions
to show that data and solutions have pattern like the ones in
Figure 1. The x–axis is the an image of the AAU logo, and
the y–axis is an image vector capturing the ‘hair’ region.

Hence, the H offset issue is a special case of the model we
have discussed here: If the resulting W0 is in the positive span
of the columns of W , they can be interpreted as H offsets.

In this work we have de ned the augmented non-negative
linear mixing model - the sparse af ne NMF. We have pre-
sented three case stories in which the new sparse af ne NMF
algorithm outperforms the standard algorithms and a naive
solution in estimation of the underlying structure of the data.
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