
LEAST SQUARES APPROXIMATE JOINT DIAGONALIZATION ON THE ORTHOGONAL
GROUP

Toshihisa Tanaka

Dept. of Electrical and Electronic Eng.,
Tokyo Univ. of Agriculture & Technology

184–8588 Tokyo, Japan.
tanakat@cc.tuat.ac.jp

Simone Fiori
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ABSTRACT

The theory and derivation of a novel method for approximate joint
diagonalization (AJD) on the orthogonal group of matrices are pre-
sented. The proposed algorithms are fast and simple, hence, easy to
implement. We introduce a least-squares-type cost function, which
is to be minimized under the constraint that the matrix to be sought
for is orthogonal. A gradient ow for optimizing such cost function
is derived and its stability is analyzed within the framework of dif-
ferential geometry. It is proposed to numerically approximate the
gradient ow by using a geodesic-based and an Euler-like update
algorithms. Numerical examples about blind source separation of
speech signals are illustrated to support the analysis.

Index Terms— Adaptive learning, gradient ow, blind source
separation, joint diagonalization, orthogonal group

1. INTRODUCTION

Approximate joint diagonalization (AJD) is an extensively used tech-
nique in blind source separation [1], which is the problem of recov-
ering source signals only from their observed mixtures without any
knowledge except the assumption of the source signals to be mutu-
ally statistically independent or uncorrelated. The underlying idea
behind the AJD technique in BSS is that the assumption of indepen-
dence implies that the correlation matrix and cross-correlation ma-
trices with time delay become diagonal when the separation is suc-
cessful [1]. Alternatively, if high-order statistical tensors of source
signals, such as joint-cumulant matrices, are considered, they should
diagonalize upon separation [1].

Consider a set A of K symmetric matrices of size N × N, A =
{Ai ∈ RN×N}Ki=1. In the framework of BSS, the Ai’s can be fourth-
order joint-cumulant matrices or (second-order) cross-correlation ma-
trices. The AJD problem formulates as: seek a unitary or non-
singular N × N matrix U that jointly diagonalizes all the matrices
inA. Several formulations to solve the AJD problem have been pro-
posed. A pioneer work on this topic was conducted by Cardoso [2],
and the cost function to be minimized is

JJADE[U] =
K∑
i=1

off (UAiUT ) (1)

where off (·) is the sum of the squares of the non-diagonal entries and
U is assumed to be orthogonal. The minimizing matrix, U, is param-
eterized by the so-called Jacobi angles [2], thus the optimal solution
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is sought for every single angle. The corresponding BSS algorithm
is known as JADE. Yeredor [3] proposed another optimization cri-
terion that exhibits superior performance in separation to JADE. In
this method, the cost function is de ned as

JLS[U, {Λi}Ki=1}] =
K∑
i=1

wi‖Ai − UΛiUH‖2F (2)

where U is not necessarily orthogonal but in CN×N , the wi’s are pos-
itive weights (scalars), the Λi’s are diagonal matrices in CN×N , and
‖ · ‖F is the Frobenius norm. In this optimization problem, not only
U but also Λi (i = 1, . . . ,K) should be found. It is worth pointing out
that to accomplish the diagonalization, a large number of parameters,
namely, U and Λ1, . . . ,ΛK should be jointly optimized. Moreover,
since matrix U is not bounded, the seeking space is not compact.

This paper proposes to impose the orthogonal constraint on U
and optimize it on the manifold of orthogonal matrices, that is, the
orthogonal group. We apply a differential geometrical approach to
optimizing U. We rst review the geometry of the orthogonal group
and of gradient-based optimization on manifold in Section 2.1. The
dynamics of matrix U is given as a gradient ow on the orthogonal
group of matrices, and the related adaptive updating formula is de-
rived. As it will be clari ed in Section 2.2, such an approach implies
the advantage that no optimization of matrices Λi is needed, namely,
the only parameter to be updated is U. The stability of the algorithm
is then analyzed and numerical updating rules are given in Section
2.4. Numerical examples of speech mixtures are discussed in order
to demonstrate the effectiveness of the present proposal in Section 3.
The obtained AJD algorithm proves to be simple in implementation
and faster than the well-known Jacobi algorithm.

2. DIFFERENTIAL GEOMETRICAL DERIVATION OF
OPTIMIZATION ALGORITHMS

2.1. Riemannian Gradient Flow on the Orthogonal Group

We review in this section how to derive ordinary differential equa-
tions (ODEs) that generate gradient ows to solve optimization prob-
lems in the framework of differential geometry, which is the calculus
of manifolds.

Let TξM be the tangent space to a smooth Riemannian manifold
(M, gM) in point ξ ∈ M, where gMξ : TξM× TξM → R denotes a
bilinear scalar product that turnsM into a metric space. In particular,
the Euclidean scalar product denoted by ge : TξM × TξM → R is
necessary to de ne the gradient on a Riemannian manifold. The
gradient, gradMξ f , of a differentiable function, f : M → R, in ξ on
(M, gM) is de ned by the following two conditions [4]:
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1. gradMξ f ∈ TξM (tangency condition)

2. gMξ
(
gradMξ f , v

)
= ge

(
∂ f
∂ξ
, v

)
for all v ∈ TξM (compatibility

condition),

where
∂ f
∂ξ
is the standard gradient (or Jacobian) of f .

By gradient-based differential equation for the constrained opti-
mization of function f :M→ R onM, where the smooth manifold,
M, fully describes the constraints, it is meant:

ξ(t) = ±gradMξ f (ξ(t)), ξ(0) = ξ0 ∈ M, (3)

where the positive sign denotes maximization and the negative sign
denotes minimization of f .

In the present paper, we make use of a special smooth manifold,
which is the group of orthogonal matrices:

O(N) = {U ∈ RN×N |UTU = IN}. (4)

This manifold is termed orthogonal group. The tangent spaces of
the orthogonal group have structure

TUO(N) = {UH ∈ RN×N |HT = −H}. (5)

In O(N), when the metric is selected to be

gO(N)U (UH1,UH2) = tr[HT1 H2], ∀H1,H2 ∈ TUO(N), (6)

the Riemannian gradient satisfying the tangency and compatibility
conditions is described as

gradO(N)U J =
∂J
∂U

− U
(
∂J
∂U

)T
U. (7)

In summary, if we have a differentiable function fromM to R, which
is commonly a cost function in optimization, we can obtain the Rie-
mannian gradient with respect to the pre-de ned metric by calcu-
lating simply the Jacobian. Details of the development of learning
algorithms on the orthogonal group can be found in [5], for example.

2.2. Derivation of AJD Flow

Following the theory reviewed in the previous subsection, we derive
AJD algorithms in the following. Motivated by Yeredor [3], the cost
function to be analyzed in this paper is given by

J[U, {Λi}Ki=1] =
K∑
i=1

‖Ai − UΛiUT ‖2F , (8)

where U ∈ O(N) and {Λi}Ki=1 is a set of diagonal matrices of size
N × N. Unlike in (2), we omit the weight coefficients; however, it
is easy to generalize the following theory to the case of J being the
weighted sum.

We could directly derive a “joint gradient ow” for both U and
Λi. Then, we would have K + 1 gradient ows, which would lead
to a quite burdensome algorithm. As it will be seen later, however,
we do not take this joint gradient approach. It is possible to derive
a single gradient ow only for U, while closed form expressions for
the step-by-step optimal value of matrices Λi in terms of the current
value of matrix U and of known matrices Ai may be derived. Under
the assumption that UTU = I, the cost function J rewrites

J[U, {Λi}Ki=1] =
K∑
i=1

tr[A2i − 2UT AiUΛi + Λ2i ], (9)

since Ai is assumed to be symmetric. The Jacobian with respect to
matrix U is obtained as

∂J
∂U

∝ −
K∑
i=1

AiUΛi. (10)

By plugging (10) into (7), we obtain the Riemannian gradient of the
cost function J with respect to U as

gradO(N)U J =
K∑
i=1

(UΛiUT AiU − AiUΛi). (11)

Prior to obtaining the gradient ow for U, we show that for a xed
U, the matrices, Λi, that minimize J can be obtained in closed form.
In fact, the cost function (9) may be advantageously recast as

J[U, {Λi}Ki=1] =
K∑
i=1

⎛⎜⎜⎜⎜⎜⎜⎝tr[A2i ] −
N∑
j=1

{
2(UT AiU) j jλi, j + λ2i, j

}⎞⎟⎟⎟⎟⎟⎟⎠

=

K∑
i=1

N∑
j=1

(
λi, j − (UT AiU) j j

)2
+ J0,

(12)

where λi, j is the jth diagonal element of matrixΛi, symbol (UT AiU) j j
denotes the ( j, j)th entry of matrixUT AiU, and J0 is the residual part,
independent of matrices Λi. This implies that for a xed U, the cost
function J is minimized when

Λi = diag(UT AiU), (13)

where diag(·) is the diagonalizing operator that keeps all diagonal
elements and sets the off-diagonal entries to zero. It therefore fol-
lows from (3), (11), and (13) that the dynamics of U is obtained as
follows:

U = −
K∑
i=1

(Udiag(UT AiU)UT AiU − AiUdiag(UT AiU)). (14)

2.3. Stability Analysis

We rst show that the matrix product B = UTU is an invariant of the
dynamical system (14). in the dynamics.

Theorem 1 B(t) = UT (t)U(t) is an invariant of the dynamics gen-
erated by the differential equation (14) if the initial point U(0) is on
O(N).

Proof. By the direct differentiation, we obtain

B = UTU + UTU =
K∑
i=1

UT AiUdiag(UT AiU)(I − UTU)

+ (I − UTU)
K∑
i=1

diag(UT AiU)UT AiU,

(15)

which implies that if B(0) = IN , then B(t) = IN always.
A further analysis regards the asymptotic stability of the base

manifold. Such result ensures that, under suitable conditions, the
base manifold O(N) is an attractor for the differential equation (14)
under small perturbations. Such result is relevant in the case that the
differential equation (14) is integrated by a inexact Euler method.

Theorem 2 If matrices Ai are positive de nite, then the manifold
O(N) is asymptotically stable for the dynamical system (14).
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Fig. 1: Joint diagonalization of speech mixtures

Brief proof. To linearize (15) around a point U0 ∈ O(N), let U =
U0 + E, where E is a small perturbation. Then, we obtain

B ≈ I + F (16)

where F = UT0 E + E
TU0. On the other hand, the right hand side of

(15) becomes

UTU + UTU = −
K∑
i=1

(HiΛiF + FΛiHi) (17)

where Hi = UT0 AiU0. Therefore, we have a linear ordinary differen-
tial equation with respect to F:

F = −
K∑
i=1

(HiΛiF + FΛiHi). (18)

Considering tr[FFT ], which is a Lyapunov function, we obtain

d
dt
tr[FFT ] = −4

K∑
i=1

tr
[
FΛ1/2i HiΛ

1/2
i F

]
< 0, (19)

since the positive de niteness ofΛ1/2i HiΛ
1/2
i . Therefore, it holds that

tr[FFT ]→ 0 as t → ∞, which implies that E→ 0.

2.4. Numerical Integration of the ODE

In order to design an effective adapting algorithm, it is necessary
to develop a suitable numerical integration method for numerically
solving the differential equation (14). A suitable numerical integra-
tion is a method based on the concept of geodesics, A geodesic is a
counterpart of a straight line of at surface on a curved space. See
details of geodesics in [5, 6], for example. Since a geodesic is a curve
on the manifold, a stable numerical integration can be performed
[5]. In the case of the orthogonal group endowed with the standard
bi-invariant canonical metric (6), a geodesic γ(t) : [0, 1] → O(N)
with the initial conditions, γ(0) = U and γ(0) = −gradO(N)U J, can be
obtained in the closed form as

γO(N)
U,−gradO(N)U J

(t) =
⎛⎜⎜⎜⎜⎝exp

⎡⎢⎢⎢⎢⎣−t
⎛⎜⎜⎜⎜⎝
(
∂J
∂U

)
UT − U

(
∂J
∂U

)T ⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎠U, (20)

where exp(·) denotes the matrix exponential.

Together with the geodesic formula, equations (11) and (13), we
obtain the geodesic-based AJD algorithm:

U(n+1) = exp
⎛⎜⎜⎜⎜⎜⎝β

K∑
i=1

(AiU(n)Λi(n)UT (n) − U(n)Λi(n)UT (n))Ai
⎞⎟⎟⎟⎟⎟⎠U(n),
(21)

where Λi(n) = diag(UT (n)AiU(n)) and β is an appropriate stepsize.
Also, by employing the Euler update formula, we obtain the Euler-
like AJD algorithm:

U(n + 1) = U(n) − β
K∑
k=1

[U(n)Λi(n)UT (n)AiU(n) − AiU(n)Λi(n)].
(22)

3. NUMERICAL EXAMPLES

A comparison study is conducted to understand the behavior of the
proposed algorithms and con rm the advantage over algorithm [2].
In all the discussed tests, observed mixtures are pre-whitened, and
matrices Ai are computed as second-order correlation matrices with
time delay. The algorithms were implemented in MATLAB and run
on an Intel Core Duo processor.

Figure 1 illustrates the results of separation obtained by using
the proposed geodesic-based algorithm. In the experiment the g-
ure refers to, two channel speech signals were mixed by a randomly
generated mixing matrix. As seen in the gure, the separation ability
of geodesic-based AJD is very good.

Figures 2a and 2b compare the behavior of two proposed algo-
rithms. It can be observed in Fig. 2a that both algorithms decrease
the value of the cost function J(n) similarly. Also, they converge
with a small number of iterations. Figure 2b shows the result of
evaluation of the orthogonality of matrix U during learning. The or-
thogonality index is de ned as η(n) = ‖UT (n)U(n) − IN‖2F . From the
gure, it can be seen that the geodesic-based algorithm strictly pre-
serves orthogonality. However, the Euler-like integration preserves
the orthogonality in a satisfactory way as well.

Table 1 lists results of blind source separation of speech mix-
tures. Twenty speech signals, each of 3,500 samples, were mixed by
a randomly generated mixing matrix. We assume that the number
of observations is the same as that of the original signals. Separa-
tion by three algorithms (the proposed geodesic-based, the proposed
Euler-like and the one based on Jacobi angles parameterization) was
performed 1,000 times and performance index (PI) [1] and process-
ing time were averaged over all the independent trials. In the pro-
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Fig. 2: Behavior of the adaptive algorithms

posed algorithm, β was chosen to be 0.15, and the stopping criterion
was tuned in such a way that three algorithms provides similar PIs.
The same simulation was conducted for the noiseless case as well
as in the noisy case with three different signal-to-noise ratio (SNR)
values. From the table, it emerges that the proposed AJD algorithms
are faster than the Jacobi iteration algorithm in all the cases. An in-
teresting observation is about computational times of the Euler-like
and the geodesic-based integration, which are very similar. In all the
cases, the performance of the Jacobi iteration algorithm is inferior to
the others in terms of computation time.

4. CONCLUSION

A novel algorithm for approximate joint diagonalization (AJD), which
is derived from a gradient ow on the orthogonal group, has been
proposed. The updating rules exhibit a simple structure and are easy
to implement. It has theoretically been shown how to approximate
the gradient ow by piece-wise geodesic arcs as well as that simpler
Euler-like integration is feasible, provided the stepsize is sufficiently

Table 1: Blind source separation results of speech mixtures
(a) Noiseless

Algorithm Averaged PI Averaged Time [s]
Geodesic 0.011602 0.506958
Euler 0.011623 0.535631
Cardoso [2] 0.011603 0.844707

(b) SNR 20dB
Algorithm Averaged PI Averaged Time [s]
Geodesic 0.019701 0.647791
Euler 0.019711 0.684150
Cardoso [2] 0.019784 0.974539

(c) SNR 10dB
Algorithm Averaged PI Averaged Time [s]
Geodesic 0.031210 0.881047
Euler 0.031199 0.940432
Cardoso [2] 0.031550 1.202101

(d) SNR 5dB
Algorithm Averaged PI Averaged Time [s]
Geodesic 0.040525 1.177167
Euler 0.040532 1.270140
Cardoso [2] 0.041033 1.429610

small, as the orthogonal group is an attractor of the optimization
dynamics. Experiments on BSS were illustrated: The proposed al-
gorithms were found to generate faster convergence and better per-
formances in separation than the Jacobi angle iteration. Although
the proposed algorithm is efficient in the application of BSS, there
would be some open problems. First, the update parameter β has to
be handcrafted: Finding the optimal parameter would lead to a faster
convergence. Second, it has been pointed out in [7] that other maps
from TO(N) to O(N), such as the Cayley transform, are known. We
should investigate the behavior of the algorithm where these maps
are used instead of the geodesic-based one.
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