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ABSTRACT

We introduce a framework for complex-valued signal processing
such that all computations can be directly carried out in the com-
plex domain. The framework, based on an elegant result due to
Brandwood, allows for easy derivation of many complex-valued al-
gorithms and their ef cient analyses. We demonstrate its application
to derivation of relative gradient updates for independent compo-
nent analysis using maximum likelihood and discuss the selection of
score functions within this framework.

Index Terms— Maximum likelihood estimation, optimization
methods, signal analysis.

1. INTRODUCTION

Complex-valued signals arise frequently in applications as diverse as
communications, radar, and biomedicine, as most practical modula-
tion formats are of complex type and applications such as radar and
magnetic resonance imaging lead to data that are inherently com-
plex valued. When the processing has to be done in a transform
domain such as Fourier or complex wavelet, again the data are com-
plex valued. In order to perform independent component analysis
(ICA) of complex-valued data there are a number of options. Algo-
rithms such as joint approximate diagonallization of eigenmatrices
(JADE) [11] or those using second order statistics [13] achieve ICA
without the need to use nonlinear functions in the algorithm. The
second-order complex ICA algorithm, strongly uncorrelating trans-
form (SUT), though is very ef cient, requires the signals to be non-
circular and a second algorithm should be utilized after its applica-
tion as a preprocessing step when the sources happen to be circular
[14], and JADE’s performance–as well as that of any algorithm that
uses joint diagonalizations—suffers when the number of sources in-
crease (see e.g. [18]). On the other hand, nonlinear ICA approaches
such as maximum likelihood (ML) [19], information-maximization
(Infomax) [8], nonlinear decorrelations [12], and maximization of
nongaussianity [15], which are all intimately related to each other,
generate higher-order statistics implicitly using nonlinear functions,
and thus present an attractive alternative for performing ICA. A num-
ber of comparison studies have demonstrated their desirable perfor-
mance over other ICA algorithms such as JADE and second-order
algorithms.

In this paper, we use an elegant result due to Brandwood [6] to
introduce a framework for complex-valued signal processing such
that all computations can be carried out in the complex domain.
Thus, the need for simplifying assumptions such as circularity of
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sources are largely eliminated both in the derivation and the analysis
of the algorithms. We show how this framework can be utilized to
derive the update rules for ML ICA in a very straightforward man-
ner and allows for a new view of the selection of score functions
enabling working entirely in the complex domain.

2. BRANDWOOD’S ANALYTICITY CONDITION AND
COMPLEX GRADIENTS

To introduce Brandwood’s result [6], which plays a key role in our
development, we de ne g: C × C → C as a function of a complex
variable z and its conjugate z∗. If treating z (resp. z∗) as a constant,
g is analytic on z∗ (resp. z), then we say that g satis es Brandwood’s
analyticity condition (BAC). This concept can be similarly extended
to vector and matrix quantities. Because our main interest is in func-
tions g that are cost functions, we consider the more special case of
g: C × C → R and state the main result of [6] for these class of
functions as:

Theorem: Let f : R × R → R be a function of real variables x
and y such that g(z, z∗) = f(x, y), where z = x + jy and that g
satis es the BAC. Then, the partial derivative ∂g/∂z (treating z∗ as
a constant in g) gives the same result as (∂f/∂x − j∂f/∂y)/2 on
substituting for z. Similarly, ∂g/∂z∗ = (∂f/∂x+ j∂f/∂y)/2.

Thus, when evaluating the gradient of functions, we can directly
compute the derivatives with respect to the complex argument, rather
than calculating individual real-valued gradients as typically per-
formed in literature (see e.g., [14], [16], [20]). It is also stated that a
necessary and suf cient condition for f to have a stationary point is
that ∂g/∂z = 0 or ∂g/∂z∗ = 0.

The main result stated above can be easily extended to vec-
tor and matrix gradients by de ning the scalar inner product be-
tween two matricesW andV as 〈W ,V〉 = Trace(WHV) so that
〈W ,W〉 = ‖W‖2Fro, where the subscript denotes the Frobenius
norm. For vectors, the de nition simpli es to 〈w ,v〉 = wHv. We
can de ne the gradient vector ∇z = [∂/∂z1, ∂/∂z2, . . . , ∂/∂zN ]T

for vector z and write for a function g(z, z∗) : C
N × C

N → R, the
rst-order Taylor series expansion in terms of the two arguments of
the function, z and z∗ as

�g = 〈∇z∗g,�z〉+ 〈∇zg,�z∗〉 = 2Re {〈∇z∗g,�z〉} . (1)

Similarly, for the matrix gradient: g(W,W∗) : C
N×N×C

N×N →
R, we can write�g=2Re{〈∇W∗g,�W〉}where∇W∗g=∂g/∂W∗

is anN ×N matrix whose (k, l)th entry is the partial derivative of g
with respect towkl. It is also important to note that, in both cases, the
gradient ∇z∗g de nes the direction of the maximum rate of change
in g(·, ·) with respect to z, not∇zg, as sometimes incorrectly noted.
It can be easily veri ed by using the Cauchy-Bunyakovski-Schwarz
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inequality that the term∇z∗g leads to increments that are guaranteed
to be nonpositive when minimizing a given function.
Relative Gradient:
We can use the matrix version of the expansion given in Eq. (1) to
evaluate the relative [10] (or the natural [2]) gradient update rule,
which has been usually simply extended to the complex case with-
out proper justi cation [1], [4], [14]. To derive the relative gradient
rule, a perturbation ofW of the form (�W)W is considered [10].
For the complex case, we can write the rst-order Taylor series ex-
pansion as in Eq. (1) with the perturbation (�W)W as

�g =

fi
∂g

∂W∗ , (�W)W

fl
+

fi
∂g

∂W
, (�W∗)W∗

fl

= 2Re

jfi
∂g

∂W∗W
H ,�W

flff

and de ne the complex relative gradient of g atW as (∂g/∂W∗)WH

to write the relative gradient update term as

ΔW = −μ ∂g

∂W∗W
HW. (2)

Upon substitution ofΔW into (2), we observe that�g = −2μ·
‖(∂g/∂W∗)WH‖2Fro, i.e., is a nonpositive quantity, thus a proper
update term. In the next section, we show how the relative gradient
update rule for complex ML ICA can be derived in a very straight-
forward manner using Eq. (2) and working in the framework we de-
scribed in this section.

3. COMPLEX ICA BY MAXIMUM LIKELIHOOD AND
MAXIMIZATION OF NONGAUSSIANITY

3.1. Complex Preliminaries

We rst brie y introduce our notation and the relevant preliminar-
ies for application to ICA. The joint probability density function
(pdf) of a complex random variable X = Xr + jXi is de ned as
pX(x) ≡ pXrXi(xr, xi) provided that it exists. Expectations of X
are given by E{g(X)} =

R∞
−∞

R∞
−∞ g(xr + jxi)pX(x)dxrdxi for

any measurable function g : C → C. We consider complex measur-
able functions, i.e., functions for which the measure over the set of
their singularities is zero in the complex vector eld, and note that
a random variable X is circular in the strict-sense if X and Xejθ

have the same pdf.
The traditional ICA problem is considered such that x = As,

x, s ∈ C
N and A ∈ C

N×N . The task of the ICA algorithm is
to determine a weight matrix W such that u = Wx = PΛs,
where P, a permutation matrix, represents the permutation ambi-
guity and Λ, a diagonal matrix, represents the scaling ambiguity.
Note that since the pdf of a complex random variable is de ned
through the joint density, to write the density of the observations
x in terms of that of the source estimate, we need to consider the
mapping C

N 
→ R
2N such that ū = Wx̄ where x̄ = [xT

r xT
i ]T

and W =

»
Wr −Wi

Wi Wr

–
since W = Wr + iWi. The den-

sity of the transformed random variables is then written through the
computation of the Jacobian as

pX(x) = |detW|pU (Wx) (3)

where pU (Wx) = pU (u) = pU (ur,ui).
ICA approaches that rely on nonlinear functions to implicitly

generate the higher-order statistics to achieve independence offer

practical and effective solutions to the ICA problem. In the next
section, we consider ICA using maximum likelihood (ML) [19] (In-
fomax [8] and nonlinear decorrelations [1], [12] are closely related to
the ML-based approach) and show how the framework described in
Section 2 can be used to derive the relative (natural) gradient update
rule for complex ICA using ML and introduce a number of score
functions for adapting to the source distributions.

3.2. Complex Maximum Likelihood

Given T independent samples x(t) ∈ C
N , we can write the log-

likelihood function as L(W) =
PT

t=1 �t(W), where

�t(W) = log p(x(t)|W) = log pS(Wx) + log | detW|.

Here, we used the notation that pS(Wx) ≡ QN
n=1 pSn(wH

n x),
where wn is the nth row of W, pSn(un) = pSn(unr , uni) is the
joint pdf of source n, n = 1, . . . , N , and assumed thatW = A−1,
i.e., ignored the scaling and permutation ambiguity to write the like-
lihood directly in terms ofW rather than the mixing matrixA.

If a function f(·, ·) exists such that pS(ur,ui) = f(u,u∗) and
satis es the BAC, we can write

∂ log f(u,u∗)
∂W∗ =

∂ log f(u,u∗)
∂u∗

xH ≡ −ψ(u,u∗)xH (4)

where u = Wx and we have de ned the score function ψ(u,u∗)
that can be written directly by using Brandwood’s theorem as

ψ(u,u∗) =
1

2

„
∂ log pS(ur,ui)

∂ur
+ j

∂ log pS(ur,ui)

∂ui

«
. (5)

To compute ∂ log |detW|/∂W, we rst observe that
∂ log |detW| = Trace(W

−1
∂W) = Trace(∂WPP−1W

−1
),

and then choose P = 1
2

»
I jI
jI I

–
to write

∂ log |detW| = Trace
`
W−1∂W

´
+ Trace

`
(W∗)−1∂W∗´

= 〈W−H , ∂W〉+ 〈W−T , ∂W∗〉 (6)

where we have used

P−1W
−1

= 1
2

»
W∗ jW
jW∗ W

–−1

= 1
2

»
(W∗)−1 −j(W∗)−1

−jW−1 W−1

–
.

We de ne Δg(W,W∗) ≡ ∂ log |detW| and write the matrix ver-
sion of the rst-order Taylor series expansion Eq. (1) as

Δg(W,W∗) =˙∇W∗ log |detW|,ΔW
¸

+
˙∇W log |detW|,ΔW∗¸ ,

which, upon comparison with Eq. (6) gives us the required result for
the matrix gradient:

∂ log |detW|
∂W∗ = W−H . (7)

We can then write the relative (natural) gradient updates to max-
imize the likelihood function using Eqs. (2), (4) and (7) as

ΔW = (W−H − ψ(u)xH)WHW = (I− ψ(u)uH)W. (8)

The update given above and the score function ψ(u) de ned in (5)
coincides with those derived in [9] using a C

n 
→ R
2n isomorhic

mapping in a relative gradient update framework and the one given in
[14] considering separate derivatives. The derivation we have given
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here for the score function represents a very straightforward and sim-
ple evaluation compared to those in [9], [14], and more importantly
shows how to bypass a major limitation in the development of ML
theory for complex valued signal processing, that is working with
probabilistic descriptions using complex algebra. Next, we demon-
strate how the same framework can be used to introduce adaptive
score functions and describe the properties of nonlinearities (score
functions) previously employed for the update given in Eq. (8).

3.3. Score Functions

A true maximum likelihood scheme estimates both the parameters
(in this case the demixing matrix W) and the nonlinearity pSn to
match the density of each source n. Typically in ML (or Infomax
[8]) ICA, the form of the pdf (the nonlinearity) is xed, or is chosen
from two different nonlinearities depending on the sub- or super-
Gaussian nature of the source estimate. A number of approaches
for adapting the nonlinearity to the source estimate is proposed for
the real-valued case. In [19], the score function is written as a lin-
ear combination of carefully selected basis functions, and these are
extended to the complex case in [9] through complex-to-real map-
pings. In this section, we show how the formulation presented in
this paper can be used to introduce score functions adapted to the
source distributions by working completely in the complex domain.

The condition pS(ur,ui) = f(u,u∗) where f(u,u∗) is an-
alytic with respect to u and u∗ independently, i.e., that it satis es
the BAC is the key condition in the derivation given in Section 3.2.
This condition translates into nding such a mapping for each source
density pS(u) so that the condition for the joint multivariate density
pS(ur,ui) is satis ed. Simple substitution of ur = (u+u∗)/2 and
ui = (u− u∗)/2j allows us to write a given pdf that is R×R 
→ R

in terms of a function C × C 
→ R and almost all smooth functions
that de ne a pdf can be shown to satisfy the BAC.
Score function based on the Gaussian pdf of order p:
The Gaussian density of order p introduced in [7] can be written as
a function C× C 
→ R as such that

fS(u, u∗) = β exp(−(α(u, u∗))p/2/p(1− ρ2))

where α(u, u∗) = (u+ u∗)2/4σ2
r + jρ(u2 − u∗2)/2σrσi − (u−

u∗)2/4σ2
i with σr and σi are the standard deviations of the real and

imaginary parts and ρ is the correlation coef cient between them. It
satis es the BAC, and for p = 2, β = 1/2πσrσi

p
1− ρ2, the pdf

takes the form of the standard Gaussian and is super-Gaussian for
0 < p < 2 and sub-Gaussian for p > 2. Note that when the sources
are circular, i.e., σr = σi = σ and ρ = 0, α(u, u∗) = uu∗/σ2

and for the standard Gaussian we have the linear score function
ψ(u, u∗) = u/2σ2 as expected. The general score function for this
pdf is simply evaluated asψ(u, u∗) = (1/2(1−ρ2))(∂α/∂u∗)α(p−2)/2.
In [17], the univariate form of this density is used to model the source
densities for deriving ICA algorithms through negentropy maximiza-
tion and signi cant performance gain is noted when the order p is
updated during the estimation. Such a scheme can be adopted for
ICA through ML as well and would also require the estimation of
the variances of the real and imaginary parts of the sources.
Adaptive score function through linear combinations of bases:
In [9], the adaptive score functions of Pham and Garat [19] are ex-
tended to the complex case through C

N 
→ R
2N mappings. We can

directly evaluate and write the adaptive scores in the complex do-
main as follows: Approximate the “true” score functionψo(u, u

∗) as
a linear combination ofM basis functions φm(u, u∗),m = 1, . . . ,M

such that ψ(u, u∗) =
PM

m=1 γ
∗
mφm(u, u∗) = γHφ where γ =

[γ1, . . . , γM ]T and φ = [φ1(u, u
∗), . . . , φM (u, u∗)]T . Then, the

problem is to determine the coef cient vector γ for each source such
that E{|ψo(u, u

∗) − γHφ|2} is minimized. The solution is given
by γ = (E{φφH})−1E{φψ∗o(u, u∗)}. The term E{φψ∗o(u, u∗)}
requires that we know the true score function, which typically is not
available. However, the useful observation is that when we write the
expectation integral, substitute the expression for ψo(u, u

∗) given in
(5) into the integral, we can evaluate this term as

E{φψ∗o(u, u∗)} = 2E

j
∂φ

∂u∗

ff
(9)

provided that the function g(ur, ui) = fS(u, u∗)φ(u, u∗) vanishes
at in nity for ur and ui. Note that when evaluating the integral asso-
ciated with the expected value computation, we consider the integral
in the real-domain R × R for the subset of all values u and u∗ such
that ur and ui are real as in [3]. The factor 2 in Eq. (9) is due to the
Jacobian of the transformation from the complex to the real domain.

In the real case, it is shown that if the set of basis functions con-
tains at least the identity function plus some other non-linear func-
tion, then the stability of the separation is guaranteed [19]. A pos-
sible choice for the complex case is to use three functions such that
φ = [u, u∗, g(|u|)]T , which is similar to the set proposed in [9].
The adaptive score function formulation also provides a convenient
way to incorporate prior information on the source distributions into
the estimation.
Simple trigonometric and hyperbolic functions as the score function:
In [1], a number of complex trigonometric functions and their hyper-
bolic counterparts are introduced as the nonlinearity for achieving
ICA in a “nonlinear decorrelations” framework [12], which is equiv-
alent to the maximum likelihood updates when one nonlinearity is
chosen as the identity and the second one as equivalent to the score
function. Among those nonlinearities, especially the inverse tan-
gent and sine—as well as their hyperbolic counterparts—are noted
as good matches for super-Gaussian source distributions and func-
tions such as (−asinh(u) + u) as matches for sub-Gaussians. Again
by de ning integrals as in the evaluation of Eq. (9), we can thus de-
termine the pdf implied by a chosen nonlinearity using the de nition
of the score function given in (4). Our numerical experiments based
on these simple score functions as well as the two adaptive scores
de ned above demonstrated that these functions provide reliable and
robust performance for a wide class of distributions, especially in the
case of super-Gaussians.

4. DISCUSSION

As discussed in Section 3.3, score functions can be adapted to the
source distributions through use of exible bivariate pdfs such as the
Gaussian densities of order-p or linear combinations of a number
of basis functions. Such implementations are more effective when
used in an adaptive framework that estimates the components one at
a time and uses orthogonalization of the vectors wn for subsequent
estimations of the independent components as in [15], [17]. When
all the components are estimated at the same time using an update of
the form given in (8) xing the nonlinearity and only adapting to the
sub or super-Gaussian nature of the sources is a practical solution.
The complex nonlinear score functions discussed in Section 3.3 us-
ing simple complex functions from the trigonometric and hyperbolic
family present an attractive alternative for such a solution.

In Figure 1, the top gure shows the approximate density im-
plied by the use of atanh u, i.e., the magnitude of exp(−u∗atanhu).
Even though the form of pdf that is implied is complex valued, which
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Original sources Estimates with atanh Estimates with JADE

Fig. 1. Top: Form of pdf implied by the score function atanh; Bot-
tom: Estimation results with ML using atanh score function and
JADE for four noncircular sources.

is expected since the starting point has been the score function, the
real part of the function dominates the overall response shown in
the gure. The bottom gure shows the scatter plots for the estima-
tion results of JADE [11] and ML with atanh as the score function.
Note that the form of the pdf with atanh as the score has a dominant
axis along the horizontal dimension, i.e., the real part of the com-
plex random variable. Thus, in the estimation results, we note that
when the direction of the source matches with that of the pdf implied
by the score function, the shape of the distribution of the estimated
components is preserved, i.e., the phase ambiguity that exists for the
complex ICA is alleviated. Thus, even though the correlations of the
magnitude with the original sources are close to unity for both JADE
and ML-atanh in this example, the correlation of real and imaginary
parts are high (close to unity) only for ML-atanh for the rst three
sources, those for which the direction of the source density matches
with that of the nonlinearity. The red source estimate shows a ro-
tated source estimate as its direction of asymmetry does not match
with that of the density model given by atanh. These results were
consistent over 100 different realizations of the source distributions.

We would like to thus note the richness of possible density match-
ing mechanisms for the case of bivariate pdfs, i.e., for the complex
sources. When using other density matching mechanisms discussed
in Section 3.3., there are a number of issues such as estimation of
sources incrementally rather than all at once using an update as in
(8) as well as whether to match the score function for all the sources
or only for a few carefully selected sources identi ed using some
prior information. Numerical results for these cases are not included
here due to space constraints but as in the real case, we noted the
advantage of using a few robust score functions instead of individu-
ally adapting to each source. The convergence speed is also signi -
cantly affected when adapting to the distributions of a large number
of sources.

Maximum likelihood provides a desirable framework for many
estimation problems, and in the case of ICA, it provides guidance for
the choice of nonlinear functions to generate the higher-order statis-
tics. In this paper, we show that we can establish a convenient frame-
work for optimization in the complex domain using a result due to
Brandwood [6] and can apply it to derive the relative gradient update

rule for ICA using ML as well as for the selection of score functions
working entirely in the complex domain. Such an approach provides
an ef cient framework and possibility to bypass assumptions com-
monly made in the derivation of complex ICA algorithms such as
circularity [5], [20] and the use of real-to-complex transformations
[9], [14], [21].
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