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ABSTRACT

We propose a new blind source separation approach that mod-

els the inherent signal dependencies such as those observed

in speech signals in order to solve the problem of separat-

ing convolved sources. The frequency domain methods for

the convolved mixture problem require a solution to the well-

known permutation problem. Our approach is based on as-

suming a vector representation of the source signal where its

multidimensional joint densities are non-spherical. Spherical

distributions may be adequate for signals that exhibit uniform

dependencies across frequencies but in case of speech signals

we can observe stronger dependencies for neighboring fre-

quency bins and almost no dependency for frequency bins that

are far apart. The non-spherical joint density model takes into

account this phenomenon. For the separation of convolved

sources, the proposed method demonstrates consistent per-

formance over previous methods and improved performance

over the spherical joint density representations.

Index Terms— Speech processing

1. INTRODUCTION

Independent component analysis (ICA) is a well-known al-

gorithmic method that has been very successful in the field

of blind source separation [1]. It assumes statistical inde-

pendence among mixed sources and separate them by max-

imizing the independence among the output signals. In the

simplest form of the analysis, the model is an instantaneous

mixture as

x(t) = As(t), (1)

where x(t), s(t), and A denote, respectively, the array of ob-

servation, the array of independent sources, and the invertible

mixing matrix.

In most practical situations where there is reverberation

and propagation time delay, however, the process of source

mixing is not instantaneous but convolutive. Hence, researches
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have been extended to ICA algorithms that model the spatio-

temporal structure of the convolutive mixing process [2–5] or

to complex ICA algorithms in order to separate the sources in

the frequency domain.

Dealing with the signals in the frequency domain has the

advantage of increased performance due to the fact that it can

better handle longer filter lengths and that the convolved mix-

ture problem reduces to an instantaneous mixture problem in

each frequency bin as in (1), which is

xf [n] = Afsf [n], f = 1, 2, · · · , F, (2)

where each value of the superscript f denotes the frequency

bin, and F denotes the number of frequency bins. Note that,

the dummy variable n, different from real time t, denotes each

frame of short-time Fourier transforms. For convenience, the

time variables will be omitted since most ICA algorithms re-

gard the process of each signal as i.i.d. samples of a random

variable.

Although the separation of such instantaneous mixtures

is easily done by complex ICA algorithms, there remains the

problem of grouping all frequency components of each source

signal, the well-known permutation problem. There have been

extensive works that proposed techniques to solve this per-

mutation problem. Smoothing the frequency-domain filter is

one approach [6–8]. Other solutions used direction of arrival

(DoA) estimation [9–11]. Also, for colored signals, inter-

frequency correlations of signal envelopes were used [12–14].

A fundamentally new approach was taken to the convolu-

tive blind source separation (BSS) problem in the frequency

domain which resulted in a robust solution for the permuta-

tion problem [15–17]. All frequency components of a source

together were considered as a multidimensional signal and

hence, instead of using an objective function that measures

the source independence in each frequency bin, an objective

function that measures the whole independence among mul-

tidimensional sources is adopted.

The new ICA formulation for independent multidimen-

sional sources is called independent vector analysis (IVA).

The model of IVA consists of a set of basic ICA models as in

(2) where the single-variate sources across different dimen-

sions have some dependency such that they can be grouped
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and aligned as a multidimensional variable, or vector. In Fig. 1,

the 2×2 case IVA mixture model is depicted where s1 and s2

denote the multidimensional sources (si = [s1
i , s

2
i , · · · , sF

i ]T)

and x1 and x2 denote the observed multidimensional mix-

tures (xi = [x1
i , x

2
i , · · · , xF

i ]T). As it can be seen, the mixing

of the multivariate sources is dimensionally constrained form-

ing ICA mixture models in each layer.
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Fig. 1. The mixture model of independent vector analysis.

Independent component analysis is extended to a formulation

with multidimensional variables, or vectors, where the mixing

process is constrained to the sources on the same horizontal

layer, or dimension.

So far, such IVA approaches that were applied to frequency

domain BSS have used likelihood as their objective functions

and have modeled frequency components of the sources (mostly

speeches) as spherically (or radially) symmetric joint densi-

ties as

ˆfsi
(si) ∝ e

− 1
σ

√∑F
f=1 |sf

i |2 . (3)

where σ is the term that adjusts the variance of the source

variables.

Since speech signals are known to be spherically invari-

ant random processes (SIRP) in the frequency domain, such

assumption seems valid and also results in decent separation

results. However, when compared to the result of frequency

domain ICA followed by perfect permutation correction, the

separation results of IVA using spherically symmetric joint

densities are slightly inferior. This suggests that such source

priors do not model speech exactly and that the performance

of IVA for speech separation can be improved by finding bet-

ter dependency models. Here we propose a new type of non-

spherical distributions for modelling the multidimensional vari-

able in IVA.

2. NEW DEPENDENCY MODEL FOR IVA

As an undirected graph, a spherical dependency model can

be depicted as a global clique where, roughly speaking, all

the line connections represent the same kind, or same weight,

of dependency. The undirected graph for a global clique is

depicted in Fig. 2(a). In the real case for speech, however,

it seems unreasonable to assign same dependency to neigh-

boring frequency components and to frequency components

that reside far apart, since the dependency of neighboring fre-

quency components is much stronger than that of frequency

components being far apart.
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Fig. 2. Undirected graphs for IVA dependency models. Here,

the line connections of each clique represent a fixed spher-

ical dependency. (a) A global clique to represent spherical

dependency. (b) A chain of local cliques to represent the pro-

posed dependency. Here the dependency propagates through

the overlaps of the chains and hence, the dependency between

two components weakens while the distance increases.

For this, we propose a dependency model that is partially

spherically symmetric and the dependency among the source

components is propagated through chain-like overlaps of spher-

ical dependencies such that the dependency between two com-

ponents weakens while the distance between them increases.

Such an example is drawn as an undirected graph in Fig. 2(b).

The corresponding multivariate probability density function

(PDF) is given in the form of

ˆfsi(si) ∝

e
− 1

σ

(√∑fe
1

f=fb
1
|sf

i |2+
√∑fe

2
f=fb

2
|sf

i |2+···+
√∑fe

m

f=fb
m

|sf
i |2
)
. (4)

where f b
k and fe

k are begin and end indices of clique k. Note

that we have flexibility in modelling the size of each clique

and also the size of overlaps, that is, the range [f b
k , fe

k ] of

clique k might have common indices with other cliques.

We derive a new IVA learning algorithm by searching for

a set of linear transforma-tion matrices that make the com-

ponents as statistically independent as possible between the

cliques, obtained by maximizing log probability of the trans-

formed sources, such that

{Wf∗} = arg max
{Wf}

P ({si}|{Wf})

= arg max
{Wf}

∑
i

log f̂si (si) +
∑

f

log
∣∣Wf
∣∣ .(5)

Performing gradient ascent on the data likelihood with natu-

ral gradient gives a rule for learning Wf for each frequency
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index f ,

ΔWf ∝ [I − ϕ(si)sH
i ]Wf , (6)

where the score function ϕ(sf
i ) is defined by

ϕ
(
sf
i

)
= −

∂ log f̂sf
i

(
sf
i

)
∂sf

i

=
∑

∀k,f∈[db
kde

k]

sf
i√∑de

k

f=db
k

∣∣∣sf
i

∣∣∣2
. (7)

3. EXPERIMENTS

Our new BSS algorithm was applied to 2×2 speech separa-

tion problems. The speech signals used were synthetic sig-

nals generated in a simulated room environment. Our exper-

iments used 8-second long real speech signals sampled at 8

kHZ. Also, 2048-point FFT and a Hanning window with the

length of 2048 tabs and the shift size of 512 samples were

chosen.

The geometric configuration of the simulated room en-

vironment is depicted in Fig. 3(a). We set the room size

to be 7m × 5m × 2.75m and set all heights of the micro-

phone and source locations to be 1.5m. 100ms was chosen

as the reverberation time and the corresponding reflection co-

efficients were set to be 0.57 for every wall, floor, and ceil-

ing. Room impulse responses were obtained by an image

method [18–20]. The real speech signals were convolved with

the impulse responses that correspond to the locations of the

sources and the microphones of each experiment.

Various 2×2 cases (Fig. 3(b)) were simulated. The separa-

tion performance was measured by the signal to interference

ratio (SIR) in dB defined as

SIRout = 10 log

( ∑
n,f |∑i rf

iq(i)s
f
q(i)[n]|2∑

n,f |∑i�=j rf
iq(j)s

f
q(j)[n]|2

)
, (8)

where q(i) indicates the separated source index that i-th source

appears and riq(j) is the overall impulse response which is de-

fined as
∑

m wf
imaf

mq(j).

The performances of our new algorithms were compared

with Lucas Parra’s algorithm [7], Sawada’s algorithm [11],

and the maximum likelihood (ML) type IVA algorithm us-

ing the joint PDF of (3). In order to focus on the objective

functions only, the other conditions have been set to be the

same except for Lucas Parra’s algorithm since it is not a fre-

quency domain ICA algorithm. The same gradient descent

optimization method was adapted, the data was prepocessed

to be zero-mean and white, and the unmixing matrix was con-

strained to be orthogonal by using the following symmetric

decorrelation scheme,

Wf ← (Wf (Wf )H
)− 1

2 Wf , f = 1, 2, · · · , F. (9)

At the end of the learning, the well-known minimal dis-

tortion principle [21] was applied to Wf as

Wf ← diag
(
(Wf )−1

)
Wf , f = 1, 2, · · · , F. (10)
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Fig. 3. Simulated room environment experiments. (a) Geo-

metric configuration of the simulated room environment. (b)

Separation performances (SIRout in dB). SSL and Proposed 1-

2 stand for the ML-type IVA BSS algorithms using the source

priors (3) and (4), respectively. In Proposed 1, we use 4 equi-

length cliques with 50% overlap. The begin and end indices

are: [1 326], [233 559], [466 791], [698 1024]. In Proposed 2,

4 mel-scaled cliques with 50% overlap, with the length and

starting indices are increasing linearly. The begin and end

indices are: [1 172], [104 360], [258 641], [488 1024]. The

other conditions such as using the same gradient descent op-

timization method, preoprocessing the data to be zero-mean

and white, and constraining the unmixing matrix to be orthog-

onal by symmetric decorrelation scheme (9) have been kept

the same.

The results are shown in Fig. 3(b). Our new algorithm

consistently outperformed the previous methods in terms of

SIR. Especially Proposed 2, using mel-scaled clique sizes,

was better than Proposed 1, equi-sized cliques.

4. CONCLUSIONS

Modelling the frequency dependencies of speech signals in a

more accurate manner leads to a more appropriate represen-

tation. This representation is captured by the vector represen-

tation of the multidimensional source and the non-spherical

density model. Our current non-spherical model favors a chain
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like signal dependency. However, due to the graphical repre-

sentation it is possible to extend this approach to other forms

of dependencies. The impact of this approach could be far

more significant for natural signals where complex multidi-

mensional signal dependencies are essential.
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