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ABSTRACT
In this paper, we propose a maximum separation margin (MSM)
training method for multiple-prototype(MP)-based pattern classi-
ers in which a sample separation margin de ned as the distance

from the training sample to the classi cation boundary can be cal-
culated precisely. Similar to support vector machine (SVM) method-
ology, MSM training is formulated as a multicriteria optimiza-
tion problem which aims at maximizing the separation margin and
minimizing the empirical error rate on training data simultane-
ously. By making certain relaxation assumptions, MSM train-
ing can be reformulated as a semide nite programming (SDP)
problem that can be solved ef ciently by some standard optimiza-
tion algorithms designed for SDP. Evaluation experiments are con-
ducted on the task of the recognition of most confusable Kanji
character pairs identi ed from popular Nakayosi and Kuchibue
handwritten Japanese character databases. It is observed that the
MSM-trained MP-based classi er achieves a similar character recog-
nition accuracy as that of the state-of-the-art SVM-based classi er,
yet requires much fewer classi er parameters.

Index Terms— large margin, pattern classi cation, support
vector machine, machine learning, semide nite programming.

1. INTRODUCTION

Discriminative training (DT) has been extensively studied over the
past two decades and been demonstrated quite effective in im-
proving the performance over the traditional maximum likelihood
(ML) training in many pattern recognition applications. The DT
methods try to minimize the empirical error rate on training set
such that a good testing performance can be expected when the
testing and training conditions match well. However, when there
exist mismatches between training and testing conditions, the DT
methods may suffer a serious overtraining problem. Therefore,
how to achieve a good generalization ability becomes an impor-
tant issue in classi er design. Large margin classi ers, such as
support vector machines (SVMs) (e.g., [11]), were invented to
address the above concern by maximizing a so-called separation
margin which re ects somehow a “distance” from a training sam-
ple to the classi cation boundary. Consequently, many algorithms
that explicitly or implicitly exploit the concept of margins have
been developed in the past decade for pattern classi er design.
More recently, researchers in automatic speech recognition (ASR)
eld have started to explore the potential of this methodology for

estimating classi er parameters based on models such as Gaus-
sian mixture models (GMMs) [10] and continuous-density HMMs
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(CDHMMs) (e.g., [5, 7, 6, 13]). Promising results have been achieved
on several ASR benchmark databases. However, the so-called
margin of a training sample used in the above works is de ned
with respect to (w.r.t.) a discriminant function as proposed by [1]
(hereinafter referred to as discriminant margin) rather than w.r.t.
classi cation boundary as de ned in the original SVM formula-
tion [11].

In this paper, we propose a maximum separation margin (MSM)
training method for multiple-prototype(MP)-based pattern classi-
ers in which the sample separation margin de ned as the distance

from the sample to the classi cation boundary can be calculated
precisely. Similar to training SVMs, MSM training is formulated
as a multicriteria optimization problem which aims at maximiz-
ing the separation margin and minimizing the empirical error rate
on training data simultaneously. Different from discriminant mar-
gin based approaches, the training objective function based on the
separation margin in our case is bounded by de nition. By mak-
ing certain relaxation assumptions, MSM training can be reformu-
lated as a semide nite programming (SDP) [12] problem that can
be solved ef ciently by some standard optimization algorithms [3]
designed for SDP. No heuristic tunning is needed in optimization
because SDP is known as a convex optimization problem in which
a global optimum can be found.

The rest of the paper is organized as follows. We present the
formulation of MSM training problem in Section 2, and its solu-
tion in Section 3. Experimental results are reported in Section 4.
Finally, we conclude the paper in Section 5.

2. FORMULATION OF MSM TRAINING PROBLEM

Suppose there are M classes {Ci}M
i=1, each being modeled by Ki

prototypes, λi = {mik}Ki
k=1, where each prototype mik is a D-

dimensional vector. We use Λ = {λi}M
i=1 to denote the set of

prototype parameters. In the pattern classi cation step, the fea-
ture vector X is compared with each of the M class models and
a discriminant function using Euclidean distance as dissimilarity
measure is computed for each class Ci as follows:

gi(X; Λ) = −min
k
‖X −mik‖2. (1)

The class that gives the maximum discriminant score is considered
to be the recognized class, i.e.,

X ∈ Ci if i = arg max
j

gj(X; Λ). (2)

Suppose we are given a set of training samples X = {Xi}M
i=1,

where Xi = {X(j)
i }Ni

j=1 represents the set of Ni training samples
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for class Ci with X
(j)
i being the j-th training sample. Let’s use

Ntr to denote the total number of training samples, i.e., Ntr =PM
i=1 Ni. For each training sample X

(j)
i , the corresponding pro-

totype index of the true class, the indices of the most confused
class and its corresponding prototype are determined as follows:

k̂ = arg min
k
‖X(j)

i −mik‖2,

q = arg max
r,r �=i

gr(X
(j)
i ; Λ),

k̄ = arg min
k
‖X(j)

i −mqk‖2. (3)

In the following, we will use gi(X) instead of gi(X; Λ) for con-
venience if no confusion will be caused according to the context
of relevant discussions.

2.1. De nition of Sample Separation Margin

For each training sample X
(j)
i , the sample margin ρ(X

(j)
i ) is de-

ned as the distance to the class boundary determined by proto-
types mik̂ and mqk̄, which can be derived as,

ρ(X
(j)
i ) =

gi(X
(j)
i )− gq(X

(j)
i )

2‖mik̂ −mqk̄‖
. (4)

The derivation is outlined as follows.
Given two prototypes of two competing classes, mik̂ and mqk̄,

the class boundary separating them is a hyperplane with a nor-
mal vector (mik̂ −mqk̄), which passes through the point, (mik̂ +
mqk̄)/2. According to the triangle theorem in geometry,

gi(X
(j)
i )− gq(X

(j)
i ) =−‖X(j)

i −mik̂‖2 + ‖X(j)
i −mqk̄‖2

= d2
1 − d2

2 = r2
1 − r2

2

= (r1 + r2)(r1 − r2), (5)

where d1, d2, r1, r2 are the relevant distances as shown in Fig. 1.

When ρ(Xj
i ) ≤ ‖m

ik̂
−mqk̄‖
2

, which corresponds to scenario (a)
in Fig. 1, it is obvious that

r1 =
‖mik̂ −mqk̄‖

2
+ ρ(X

(j)
i ), r2 =

‖mik̂ −mqk̄‖
2

− ρ(X
(j)
i ).

(6)

Substituting Eq. (6) to Eq. (5), we can get

gi(X
(j)
i )− gq(X

(j)
i ) = 2ρ(X

(j)
i ) · ‖mik̂ −mqk̄‖.

Same result can be derived for the case corresponding to scenario

(b) in Fig. 1, where ρ(X
(j)
i ) ≥ ‖m

ik̂
−mqk̄‖
2

.

Actually, the above sample margin ρ(X
(j)
i ), re ecting the rel-

ative position to the classi cation boundary, is a normalized ver-
sion of the discriminant margin, gi(X

(j)
i )− gq(X

(j)
i ).

2.2. Maximum Separation Margin Training

When the training samples are separable, MSM training is to es-
timate the classi er parameters Λ by maximizing the minimum
sample margin as follows:

Λ̂ = arg max
Λ

min ρ(X
(j)
i ). (7)
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Fig. 1. De nition of sample margin in a prototype-based classi er:

(a) ρ(X
(j)
i ) ≤ ‖m

ik̂
−mqk̄‖
2

and (b) ρ(X
(j)
i ) ≥ ‖m

ik̂
−mqk̄‖
2

.

If we introduce a new variable ρ as the lower bound of sample mar-
gins for all the training samples, then the above maxmin problem
can be converted to an equivalent constrained optimization prob-
lem as follows:

Λ̂ = arg max
Λ

ρ subject to ∀X(j)
i ∈ X ρ(X

(j)
i ) ≥ ρ. (8)

In general case where some training samples are inseparable,
it is important to make a good balance between maximizing the
classi er margin and minimizing the empirical error rate on the
training set. So a nonnegative slack variable ξ

(j)
i is introduced for

each training sample as in soft SVM to satisfy ρ(X
(j)
i )+ ξ

(j)
i ≥ ρ

for the outlier samples and inseparable cases. A “weighted sum”
approach is used here to integrate the above two criteria into a
uni ed one as follows:

Minimize −ρ + γ1

X
i

X
j

�(ξ
(j)
i ) (9)

Subject to

ρ(X
(j)
i ) + ξ

(j)
i ≥ ρ (10)

ξ
(j)
i ≥ 0, (11)

where the loss function �(ξ
(j)
i ) is de ned as

�(ξ
(j)
i ) =

(
1 ξ

(j)
i > 0

0 ξ
(j)
i = 0

(12)

and γ1 is the penalty weight for slack variables.
Although the above formulation of MSM training problem is

appealing, the discontinuous loss function and the min operator
embedded in gi(X

(j)
i ) in Eq. (1) make the above optimization

problem dif cult to solve. Therefore, in this study, we propose the
following iterative procedure for MSM training:

Step 1: Initialization

First, LBG clustering algorithm [8] is used to obtain the initial
prototypes, m0

ik, for each class.

Step 2: Updating mik

Given the m0
ik’s, the true prototype index k̂ for each training sam-

ple can be identi ed. Then, mik’s are updated by solving the fol-
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lowing relaxed optimization problem:

Minimize

−ρ̃ + γ1

X
i

X
j

ξ̃
(j)
i + γ2

X
i,n,i<n

X
k,l

‖mik −mnl‖2 (13)

Subject to

∀n �= i∀l − ‖X(j)
i −mik̂‖2 + ‖X(j)

i −mnl‖2 + ξ̃
(j)
i ≥ ρ̃

(14)X
i

X
k

‖mik −m0
ik‖2 ≤ r2 (15)

ξ̃
(j)
i ≥ 0. (16)

The constraint in Eq. (15) is imposed to make sure the “feasible
region” is restricted as the neighborhood area with the radius r

around the current prototypes {m0
ik} so that the prototype index k̂

is meaningful.

Step 3: Repeat Step 2 until convergence

Set m0
ik = mik and repeat Step 2 until a pre-speci ed criterion is

satis ed, e.g., a xed number of iterations, Ntotal.

3. SDP FORMULATION AND SOLUTION

Generally speaking, the optimization problem in Step 2 of the
above MSM training procedure is a non-convex optimization prob-
lem. However, it can be reformulated into a standard SDP problem
if further relaxation assumptions are made.

Let’s arrange all L =
PM

i=1 Ki prototype vectors into a D×L
matrix as U = [m11 · · ·mij · · ·mMKM ] and all slack variables
into a Ntr×Ntr diagonal matrix Ξ = Diag{ξ̃(1)

1 , ..., ξ̃
(j)
i , ..., ξ̃

(NM )
M }.

The dissimilarity measure between X
(j)
i and any prototype mck

can be calculated as

Ack(X
(j)
i ) =−‖X(j)

i −mck‖2

=−(X
(j)
i ; eck)T [ID; U ]T [ID; U ](X

(j)
i ; eck), (17)

where eck ∈ �L is the vector of all zeros except a −1 at the
f̂(c, k)-th position (f̂(c, k) = Σc−1

i=1 Ki + k); ID is a D×D iden-
tity matrix; and (X

(j)
i ; eck) ∈ �D+L is the concatenated vector of

X
(j)
i and eck. Similarly, the Euclidean distance between any two

prototypes and the Euclidean distance between any prototype and
its initial setting can be calculated as

‖mck −mnl‖2 = eT
ck,nlU

T Ueck,nl, (18)

‖mck −m0
ck‖2 = (m0

ck; eck)T [ID; U ]T [ID; U ](m0
ck; eck),(19)

where eck,nl ∈ �L is a vector with 1 at the f̂(c, k)-th position,
−1 at the f̂(n, l)-th position and zeros elsewhere.

Since Y = UT U is non-convex, by following the practice in
[12], we relax the constraint Y = UT U to Y 	 UT U , where Y 	
UT U means that Y − UT U is semide nite, i.e., Y − UT U 	 0.
It is well-known that the condition Y 	 UT U is equivalent to

Z =

„
ID U
UT Y

«
	 0.

Therefore, we can reformulate the above relaxed problem as a
standard SDP problem, namely, to nd a symmetric matrix Z ∈

�(D+L)×(D+L), a diagonal matrix Ξ ∈ �Ntr×Ntr , and a variableeρ, which

minimize −ρ̃ + (γ1I) · Ξ + (γ2B) · Z, (20)

subject to

∀X(j)
i ∀n �= i∀l ρ̃− Âik̂,nl(X

(j)
i ) · Z − Sij · Ξ ≤ 0,

Q · Z ≤ r2,

Z1:D,1:D = ID,

Z 	 0, Ξ 	 0, ρ̃ ≥ 0,

where B, Q, Âik̂,nl(X
(j)
i ) are coef cient matrices required in SDP

formulation and de ned as

B =
X
i<j

X
k,l

(0; eik,jl)(0; eik,jl)
T ,

Q =
X

i

X
k

(m0
ik; eik)(m0

ik; eik)T ,

Âik̂,nl(X
(j)
i ) = Aik̂(X

(j)
i )− Anl(X

(j)
i ), (21)

and Sij is a Ntr ×Ntr diagonal matrix with all zeros except 1 at
the f̄(i, j)-th diagonal element (Note that f̄(i, j) = Σi−1

k=1Nk +j).
The above SDP problem can then be solved by using the DSDP

software [3].

4. EXPERIMENTS AND RESULTS

4.1. Experimental Setup

In order to evaluate the effectiveness of the proposed MSM train-
ing method, a series of comparative experiments are conducted
on the task of the recognition of most confusable Kanji character
pairs identi ed from popular Nakayosi and Kuchibue handwritten
Japanese character databases [9]. Table 1 lists those ve pairs of
confusable Kanji characters with their SJIS codes and the corre-
sponding number of samples in training, development and test sets
of each character group. It is noted that samples for each Kanji
character from Nakayosi database are used for training, while sam-
ples from Kuchibue database are partitioned randomly into two
sets corresponding to development set and test set, respectively.

For feature analysis, a 512-dimensional raw feature vector is
extracted from each character sample by using the approach pro-
posed in [2]. A new 64-dimensional feature vector is then obtained
via LDA (Linear Discriminant Analysis) transformation which is
estimated by using training samples from 2965 level-1 Kanji char-
acters, and is used for constructing different character classi ers in
the following experiments.

For single-prototype(SP)-based classi ers, the initial value of
the prototype is simply the mean of the training feature vectors
of each character class. For MP-based classi ers, LBG clustering
algorithm [8] is used rst to obtain the initial prototypes for each
character class, followed by MSM training.

In SDP-based MSM training, the control parameter r is set
as r = 0.4

√
L, and Ntotal = 1. For SP-based binary classi-

ers, we set γ2 = 0 in Eq. (20), and introduce one more con-
straint B · Z ≤ d2 instead for the ease of implementation, where
d = ||m0

11 −m0
21||. For all other cases, the above standard SDP

problem in Eq. (20) is solved with γ2 = 0.005 and γ1 being tuned
on development set from 0.02 to 0.12 with a step size of 0.005
for binary classi ers, and from 0.005 to 0.025 with a step size of
0.001 for the multiclass classi er, respectively.
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Table 1. Five most confusable Kanji character pairs identi ed
from Nakayosi and Kuchibue databases, and the corresponding
number of samples in training, development and test sets.

Group SJIS Code Training Set Dev. Set Test Set
A sjisx8f5e/89fa 326 79 160
B sjisx88be/8c49 326 78 160
C sjisx8cf3/8cf2 326 119 240
D sjisx96a2/9696 326 199 400
E sjisx928f/88a3 326 78 160

Table 2. A comparison of character recognition rates (in %) of
LBG-trained MP-based classi ers with 1 or 2 prototypes, SVM-
based classi ers with linear or RBF kernel functions, and MSM-
trained MP-based classi ers with 1 or 2 prototypes on three two-
class classi cation tasks (A, B, C) and one ten-class classi cation
task (All, including A, B, C, D, E).

LBG SVM MSM
1 2 Linear RBF 1 2

A 80.00 84.38 96.25 95.63 96.25 96.88
B 82.50 83.13 93.50 93.75 93.75 94.38
C 86.67 90.83 95.00 94.58 95.00 95.42

All 83.13 82.77 90.63 90.89 90.71 90.80

For comparison, the popular toolkit LIBSVM [4] is used to
train two types of SVM-based classi ers for the same tasks. One is
based on linear SVM, the other is based on RBF (radial basis func-
tion) SVM. Two control parameters, namely the penalty weight C
and the hyperparameter γ in RBF kernel function (see [4] for de-
tails), are tuned on the development set of each recognition task to
obtain the best-performing classi ers. For linear SVM, the penalty
weight C is scheduled to change from 0.05 to 1 with a step size
of 0.05. For RBF-SVM, an exponentially growing sequence of C
and γ are tried from 2−4 to 28.

4.2. Experimental Results

Table 2 summarizes a comparison of character recognition rates
(in %) on test set of LBG-trained MP-based classi ers with 1 or 2
prototypes, SVM-based classi ers with linear or RBF kernel func-
tions, and MSM-trained MP-based classi ers with 1 or 2 proto-
types on three two-class classi cation tasks (A, B, C) and one
ten-class classi cation task (All, including A, B, C, D, E). It is ob-
served that 1) MSM-trained classi ers with single prototype achieve
a similar performance with that of linear-SVM-based classi ers, 2)
MSM-trained classi ers with 2 prototypes perform better than that
of RBF-kernel-based SVM classi ers on two-class classi cation
tasks, 3) MSM-trained classi er with 2 prototypes achieves a sim-
ilar performance with that of RBF-kernel-based SVM classi er on
the ten-class classi cation task. An important advantage of MP-
based classi er is that the number of parameters is far smaller than
that of SVM-based classi er, where there are more than 60 support
vectors for each class in RBF-kernel-based SVMs.

5. SUMMARY

In this paper, we have proposed a maximum separation margin
(MSM) method for training multiple-prototype-based pattern clas-
si ers, and studied how to use SDP techniques to solve the MSM

training problem. The effectiveness of the proposed approach has
been con rmed by evaluation results on several tasks of recog-
nition of confusable handwritten Kanji characters. Ongoing and
future works include 1) to reformulate the training problem ap-
propriately that can re ect the original intention of using the no-
tion of separation margin, yet the problem can be solved by using
some more scalable optimization techniques rather than SDP; and
2) to evaluate the above techniques on large vocabulary handwrit-
ten Chinese character recognition tasks.
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