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ABSTRACT

We present an algorithm for learning parametric classifiers

on a partially labeled data manifold, based on a graph rep-

resentation of the manifold. The unlabeled data are utilized

by basing classifier learning on neighborhoods, formed via

Markov random walks. The proposed algorithm yields supe-

rior performance on three benchmark data sets and the margin

of improvements over existing semi-supervised algorithms is

significant.

Index Terms— semi-supervised learning, classifier, par-

tially labeled data, graph, logistic regression

1. INTRODUCTION

Supervised learning has proven an effective technique for learn-

ing a classifier when there are sufficient examples of labeled

data. In many applications (medical diagnosis, etc.), a gener-

ous provision of labeled data is usually not available, due to

the highly demanding cost incurred by labeling a data point.

Nevertheless, an unlabeled datum (vector of features) is com-

paratively much less expensive to acquire, leading to an ample

set of data of which only a small subset are labeled. Recent

years have witnessed a surge of interest in semi-supervised

learning, which addresses the problem of how to efficiently

utilize the partially labeled data in classifier designing.

To date, there have been a number of semi-supervised

methods developed. The generative-model method, an early

semi-supervised method, estimates the joint probability of data

and labels via expectation-maximization (EM), treating the

missing labels of unlabeled data as hidden variables [1]. Co-

training [2], another early method, exploits two independent

subvectors of features, using one to provide the label esti-

mates for the other. The semi-supervised support vector ma-

chine (SVM) [3] represents a more recent method, which max-

imizes the margin between classes, taking into account both

labeled and unlabeled data. The graph-based method [4, 5, 6],

the main focus of current research in semi-supervised learn-

ing, exploits the assumption that strongly connected data points

share the same label, and utilizes the spectral graph theory to

quantify the between-data connectivity. For a more complete

review of the literature, see [7].

Most graph-based algorithms operate in a transductive fash-

ion, i.e., they directly learn the labels of the unlabeled data,

instead of learning a classifier first and then using the classi-

fier to infer the unseen labels (the inductive fashion). While

transductive algorithms avoid the problem of model selection

for a classifier, they lack a principled way of predicting the la-

bels of new unlabeled data outside the training set. The work

in [6] addresses this problem by constructing a graph-based

prior distribution on the parameters of a classifier and learn-

ing the classifier by maximization of a posterior (MAP); the
prior utilizes both labeled and unlabeled data, thus enforcing

semi-supervised learning. Several drawbacks are inherent in

the algorithm in [6]. First, the hyper-parameter balancing the

importance of the prior relative to the data likelihood needs to

be learned. Second, the label consistency of close data points

cannot be accurately enforced by the prior if the convexity

is desired in the MAP estimation. Third, the prior is data-

dependent and hence is difficult to be extended to the multi-

task case, in which one performs semi-supervised learning on

multiple partially labeled sets simultaneously.

In this paper, we propose an algorithm for learning para-

metric classifiers on a partially labeled data manifold, by rep-

resenting the manifold as a graph, where each vertex repre-

sents a data point and the weighted edge between two ver-

tices manifests the immediate connectivity between the cor-

responding data points. We are motivated by the work in [4]

and build the t-step connectivity between data points via a
Markov random walk on the manifold. To account for hetero-

geneities in the data manifold, we let the random walk take

different step-sizes at different data locations; each step-size

dictates a Markov transition matrix and we select the step-size

to assemble the transition matrix for the entire manifold. Our

algorithm is an alternative to the algorithm in [6] and yet is

not subject to the drawbacks there.

2. THE GRAPH REPRESENTATION OF A
PARTIALLY LABELED DATA MANIFOLD

Let G = (X ,W) be a graph, where X = {x1, x2, · · · , xN}
is the set of vertices andW = [xij ]N×N is the affinity ma-

trix with the (i, j)-th element wij indicating the strength of
immediate connectivity between vertices xi and xj . For the
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purpose of data classification, the vertex set xi coincides with
the set of data points (labeled or unlabeled), andwij is a quan-
titative measure of the closeness of data points xi and xj . We
are considering the semi-supervised setting, where only a sub-

set of X are provided with class labels, leading to a partially

labeled graph.

Though there are many alternative ways of defining wij ,
here we consider a widely used definition

wij = exp(−0.5 ‖xi − xj‖2/σ2
i ) (1)

where ‖·‖ is the Euclidean norm. Following [4], we introduce
a Markov transition matrix A = [aij ]N×N , which defines a
Markov random walk. The (i, j)-th element

aij = (
∑N
k=1wik)

−1wij (2)

gives probability of walking from xi to xj by taking a single
step. In general we are interested in a t-step random walk, the
transition matrix of which is given byA raised to the power of
t, i.e., At = [a(t)ij ]N×N . Letting t = 0 makes At degenerate
to an identity matrix, in which case one can only stay at a

single data point. Letting t equal to the number of vertices
represents the worse case that the randomwalker must pass all

vertices during a trip from one vertex to another. In general,

a small (large) t under-utilizes (over-estimates) the unlabeled
data. Other choices of t are discussed in [4].

In specifying the Markov transition matrix in (1) we have

used a distinct σi for each data point xi. In the random walk,
σ can be thought of as the step-size. Therefore location-

dependent step-sizes allow one to account for possible het-

erogeneities in the data manifold — at locations where data

are densely distributed a small step-size is enough, whereas at

locations where data are sparsely distributed a large step-size

is necessary to connect a data point to its nearest neighbor.

A simple choice of the heterogeneous σ is to let σi to be a
fraction of the shortest Euclidean distance between xi and all
other data points in X . This ensures each data point is imme-
diately connected to at least one neighbor.

3. NEIGHBORHOOD-BASED LEARNING

Any two data points xi and xj are said to be t-step neigh-

bors, denoted as xj
t∼ xi, if a(t)ij > 0. Then Nt(xi) = {x :

x t∼ xi} ⊆ X , which represents the set of t-step neighbors of
xi, is called the t-step neighborhood of xi. When t = 0, the
neighborhood shrinks to a single data point, N0(xi) = {xi}.
We define the probability of label yi given the t-step neigh-
borhood of xi

p(yi|Nt(xi),θ) =
∑N
j=1a

(t)
ij p(yi|xj ,θ) (3)

where the magnitude of a
(t)
ij automatically determines the con-

tribution of xj to the neighborhood, thus we are allowed to

run the index j over the entire X . The p(yi|xj ,θ) is the
probability of label yi given a single data point xj (zero-step
neighborhood) and it is represented by a standard probabilis-

tic classifier parameterized by θ. In this paper we consider
binary classification with y ∈ {−1, 1}, and choose the form
of p(yi|xi,θ) as a logistic regression classifier

p(yi|xj ,θ) =
[
1 + exp(−yiθ

Txj)
]−1

(4)

where we assume a constant element 1 prefixed to each x (the
prefixed x is still denoted as x for notational simplicity), thus
the first element in θ is a bias term.

To distinguish (3) and (4), we call the former a neighbor-

hood-based classifier and the latter a regular classifier. The

fundamental difference is, the regular classifier predicts yi by
xi alone while the neighborhood-based classifier predicts yi
by xi and the neighbors of xi. The neighborhood of xi is
formed by all xj’s that can be reached from xi by t-step ran-
dom walks, with each xj contributing to the prediction of yi
in proportion to a

(t)
ij . The role of neighborhoods is then con-

spicuous — in order for xi to be labeled yi, each neighbor
xj must be labeled consistently with yi, in the degree pro-

portional to a
(t)
ij ; in such a manner, yi implicitly propagates

over the neighborhood. By taking the neighborhoods into ac-

count, it is possible to learn a classifier with only a few la-

bels present; the classifier thus learned is much less subject to

over-fitting than when ignoring the neighborhoods.

The learning begins with the neighborhood-conditioned

likelihood function

p({yi, i ∈ L}|{Nt(xi) : i ∈ L},θ) =
∏
i∈Lp(yi|Nt(xi),θ)

=
∏
i∈L

∑N
j=1a

(t)
ij p(yi|xj ,θ) (5)

where L ⊆ {1, 2, · · · , N} denotes the set of indices of la-
beled data, and we assume the labels are conditionally inde-

pendent. The likelihood function is the joint probability of

observed labels given the t-step neighborhood of each corre-
sponding data point. To enforce sparseness of θ and promote
generalization, we impose a normal prior on θ,

p(θ|Λ) = (detΛ)−1/2(2π)−d/2 exp(−θTΛθ/2) (6)

where Λ = diag[λ1, ...λi, ..., λd] are hyper-parameters, and
d is the dimensionality of x. Each hyper-parameter has an
independent Gamma distribution, hence

p(Λ|α, β) =
∏d
i=1

βαi
i

Γ(αi)
λαi−1
i exp(−λiβi) (7)

Marginalizing Λ, we obtain the prior distribution conditional
directly on α and β, p(θ|α, β) =

∫
p(θ|Λ)p(Λ|α, β) dΛ,

from which and (5) the posterior of θ follows

p(θ|α, β, {yi,Nt(xi) : i ∈ L})

= Z−1
∏
i∈L

N∑
j=1

a
(t)
ij p(yi|xj ,θ)

∫
p(θ|Λ)p(Λ|α, β) dΛ (8)
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with Z a normalization constant. We are interested in the

MAP estimate of θ, which maximizes (8) or, equivalently,

�(θ)
def.
= ln p(θ|α, β, {yi,Nt(xi) : i ∈ L}) + lnZ

=
∑
i∈L

ln
N∑
j=1

a
(t)
ij p(yi|xj ,θ) + ln

∫
p(θ|Λ)p(Λ|α, β) dΛ (9)

The θ obtained by maximization of �(θ) generally is less sub-
ject to over-fitting for two reasons — the neighborhoods in-

corporated into the first term of �(θ) undermine over-fitting,
as mentioned earlier; the second term of �(θ) enforces sparse-
ness of θ, which again undermines over-fitting.

4. THE LEARNING ALGORITHM

Wemaximize (9) by expectation-maximization (EM). For any

{δij : δij ≥ 0,
∑N
j=1 δij = 1} and {q(Λ) :

∫
q(Λ)dΛ = 1},

we apply Jensen’s inequality to the righthand side of (9) to

obtain the lower bound

�(θ) ≥ Q(θ|δ, q) def.=
∑
i∈L

N∑
j=1

δij ln
a
(t)
ij p(yi|xj ,θ)

δik

+
∫

q(Λ) ln
p(θ|Λ)p(Λ|α, β)

q(Λ)
dΛ (10)

where the equality holds when

δij=
p(yi|xj ,θ)a(t)ij∑N
k=1p(yi|xk,θ)a(t)ik

, q(Λ)=
p(w,Λ|α, β)∫
p(w,Λ|α, β)dΛ

(11)

where p(w,Λ|α, β) =
∫

p(θ|Λ)p(Λ|α, β)dΛ. The EM al-

gorithm consists of iterating the following two steps.

1. E-step: computing {δij} and q(Λ) using (11);

2. M-step: compute the re-estimate of θ as

θ = argmax
�θ Q(θ̂|δ, q)

The convergence is monitored by checking �(θ), which is
guaranteed to monotonically increase over the EM iterations.

Two points are noticeable regarding the technical details.

First, since (7) is conjugate to (6), q(Λ) is of the same form
as (7) with updated hyper-parameters,

q(Λ) =
∏d
i=1

(βi + 0.5 θ2i )
αi+0.5

Γ(αi + 0.5)
λαi−0.5
i e−λi(βi+0.5θ2i ) (12)

and the integral
∫

p(θ|Λ)p(Λ|α, β)dΛ is equal to

1
(2π)d/2

d∏
i=1

βαi
i

Γ(αi)
Γ(αi + 1

2 )(
βi + 1

2θ
2
i

)αi+
1
2

(13)

a useful result in evaluating �(θ) for convergence check.
Second, in computing Q(θ̂|δ, q) by (10), one needs to

compute
∫

q(Λ) ln p(θ̂|Λ)dΛ, which is found equal to
θ̂ Tdiag [Eq(λ1),Eq(λ2), · · · ,Eq(λd)] θ̂

with Eq(λi) = (αi + 1
2 )(βi +

1
2θ

2
i )
−1.

5. EXPERIMENTAL RESULTS

The proposed semi-supervised algorithm is evaluated on three

benchmark data sets— Pima Indians Diabetes Database (PIMA),

Wisconsin Diagnostic Breast Cancer (WDBC) data, and Johns

Hopkins University Ionosphere database (Ionosphere). These

data sets and their descriptions are publicly available at the

UCI machine learning repository [8]. The evaluation is per-

formed in comparison to four other semi-supervised algorithms,

namely, the transductive SVM [3], the algorithm of Szummer

& Jaakkola [4], GRF [5], and Logistic GRF [6]. The perfor-

mance is evaluated in terms of classification accuracy, defined

as the ratio of the number of correctly classified data over the

total number of data being tested.

We consider two testing modes: transductive and induc-

tive. In the transductive mode, the test data are the unlabeled

data that are used in training the semi-supervised algorithms;

in the inductive mode, the test data are a set of holdout data

unseen during training. We follow the same procedures as

used in [6] to perform the experiments. Denote by X any of

the three benchmark data sets and Y the associated label set.
In the transductive mode, we randomly sample XL ⊂ X and

assume the associated label set YL are available. The semi-
supervised algorithms are trained by X ∪ YL and tested on
X \XL. In the inductive mode, we randomly sample two dis-
joint data subsetsXL ⊂ X andXU ⊂ X , and assume the label
set YL associated with XL are available. The semi-supervised
algorithms are trained by XL ∪ YL ∪ XU and tested on 200
data randomly sampled from X \ (XL ∪ XU ).

The comparison results are summarized in Figures 1 and

2, where the results of the proposed algorithm and the algo-

rithm of Szummer & Jaakkola are calculated by us, and the

results of remaining algorithms are cited from [6]. Each curve

in the figures is a result averaged from T independent trials,

with T = 20 for the transductive results and T = 50 for the
inductive results. In the inductive case, the comparison is be-

tween the proposed algorithm and the Logistic GRF, as the

others are transductive algorithms.

For the proposed algorithm, we can either use the reg-

ular classifier in (4) or the neighborhood-based classifier in

(3) to predict the labels of unlabeled data seen in training

(the transductive mode). In the inductive mode, however, the

{a(t)ij } are not available for the test data (unseen in training)
since they are not in the graph representation, therefore we

can only employ the regular classifier. In the legends of Fig-

ures 1 and 2, a suffix “II” to proposed algorithm indicates that

the neighborhood-based classifier is invoked in testing; when

no suffix is attached, the regular classifier is invoked.

In general, the proposed algorithm outperforms all the

competing algorithms on the data sets considered here. The

improvements are particularly significant on PIMA and Iono-

sphere. The margin of improvements achieved by the pro-

posed algorithm over Logistic GRF is striking and encourag-

ing — the proposed algorithm virtually performs better in al-
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Fig. 1. Transductive results. Each curve is an average from 20 independent trials. The horizontal axis is the size of XL. The
algorithms are tested on XU . The algorithm of Szummer & Jaakkola [4] and ours use σi = minj ‖xi − xj‖/3 and t = 100.
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Fig. 2. Inductive results. Each curve is an average from 50 independent trials. The horizontal axis is the size of XU . From
left to right in the sub-figures, the size of XL is 10, 20, 30, 40. The algorithms are tested on 200 data randomly sampled from
X \ (XL ∪ XU ). Error bars are shown for the proposed algorithm, which uses σi = minj ‖xi − xj‖/3 and t = 100.

most all individual trials, as indicated by the error bars shown

in Figure 2. Seen from the last sub-figure of Figure 1, the

neighborhood-based classifier boosts the improvement a lot

on Ionosphere. Also noted in Figure 2, the advantage of our

algorithm becomes more conspicuous as the number of la-

beled training data gets smaller.

6. CONCLUSIONS

We have presented a new semi-supervised learning algorithm

for classification. By basing the learning on neighborhoods

built from Markov random walks on a partially labeled data

manifold, we efficiently employ the unlabeled data to over-

come the over-fitting problem that plagues supervised learn-

ing due to insufficient labeled data. The proposed algorithm

produces a parametric classifier, which makes it easy to pre-

dict the labels of new data that are unseen during training. The

experimental results on three benchmark data sets demon-

strate that our algorithm yields marked improvements over

competing state-of-the-art algorithms.
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