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ABSTRACT

For classification task, supervised dimensionality reduction is

a very important method when facing with high-dimensional

data. Linear Discriminant Analysis(LDA) is one of the most

popular method for supervised dimensionality reduction. How-

ever, LDA suffers from the singularity problem, which makes

it hard to work. Another problem is the determination of op-

timal dimensionality for discriminant analysis, which is an

important issue but often been neglected previously. In this

paper, we propose a new algorithm to address these two prob-

lems. Experiments show the effectiveness of our method and

demonstrate much higher performance in comparison to LDA.

Index Terms— optimal dimensionality, supervised dimen-

sionality reduction, linear discriminant analysis, singularity

problem, image recognition

1. INTRODUCTION

Dimensionality reduction is an important method when facing

with high-dimensional data, and many supervised dimension-

ality reduction algorithms have been proposed for the purpose

of classification task. Among those supervised algorithms,

Linear Discriminant Analysis(LDA) is one of the most pop-

ular one. It has been successfully applied in many classifica-

tion task such as face recognition. However, there exist sev-

eral drawbacks in LDA. Firstly, it suffers from the small sam-

ple size(SSS) problem when dealing with high dimensional

data. In this case, the within-class scatter matrix Sw may be-

come singular, which makes LDA difficult to work. Many ap-

proaches have been proposed to address this problem[1, 2, 3].

However, all these variants of LDA discard a subspace and

some important discriminative information may be lost.

Another drawback of LDA is that the number of available

projection directions in LDA is smaller than the class number

[4] and it is insufficient for some complex problems.Moreover,

based on the criterion of LDA, one can not determine the op-

timal dimensionality to be reduced since the optimal value of

the criterion is monotonic with respect to projection dimen-

sionality.
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How to select a suitable dimensionality for discriminant

analysis? This important issue was often neglected previ-

ously. In this paper, we tend to solve this problem. To this

end, we propose a new criterion, under which the optimal

value is not monotonic with respect to projection dimension-

ality. Then we can extract the optimal dimensionality for dis-

criminant analysis based on this criterion. Simultaneously,

the singularity problem in LDA does not occur naturally.

Using the kernel trick, our method can also be easily ex-

tended to the nonlinear case.

The rest of this paper is organized as follows: A brief view

and analysis of LDA is present in Section 2. In Section 3, we

propose a new algorithm to solve these problems. A nonlin-

ear extension of our method is given using the kernel trick,

which is described in Section 4. In Section 5, two experi-

ments on image recognition are presented to demonstrate the

effectiveness of our method. Finally, we give the conclusions

in Section 6.

2. REVIEW OF LINEAR DISCRIMINANT ANALYSIS

Let xi ∈ R
d(i = 1, 2, ..., n) be d-dimensional data and li ∈

{1, 2, ..., c} be associated class labels, where n is the number

of data and c is the number of classes. Let ni be the number

of data in the class i.
LDA is to learn a linear transformationW : R

d → R
m,

and W ∈ R
d×m. Then the original high-dimensional data x

is transformed into a low-dimensional vector:

y = WT x (1)

With the projection matrix W, LDA tries to maximize

the between-class scatter, while minimizing the within-class

scatter. The within-class scatter matrix Sw and the between-

class scatter matrix Sb are defined as

Sw =
c∑

i=1

∑
j:lj=i

(xj − mi)(xj − mi)T (2)

Sb =
c∑

i=1

ni(mi − m)(mi − m)T (3)

where mi(i = 1, 2, ..., c) is the mean of the samples in class
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i and m is the mean of all the samples:

mi =
1
ni

∑
j:lj=i

xj (4)

m =
1
n

n∑
j=1

xj (5)

The projection matrix W∗ in LDA is learned by solving

the following optimization problem:

W∗ = arg max
W∈Rd×m

tr
(
(WT SwW)−1WT SbW

)
(6)

where tr(·) denotes the trace operator. It has been known

that the solution of this optimization problem is the m largest

eigenvectors of S−1
w Sb, and the optimal value is

∑m
i=1 λi,

where λi(i = 1, 2, ..., m) are the first m largest eigenvalues

of S−1
w Sb and m is the projection dimensionality[5].

From the solution we can directly see the two limitations

of LDA. First, when Sw is singular, it cannot be solved nu-

merically. Second, the optimal value monotonously increase

when the projection dimensionality m increase. Therefore,

one cannot determine the optimal dimensionality for discrim-

inant analysis. In the next section, we propose a new algo-

rithm to solve this two problems.

3. OPTIMAL DIMENSIONALITY DISCRIMINANT
ANALYSIS

Similar to LDA, our goal is also to maximize the between-

class scatter, while minimizing the within-class scatter. To

avoid the singularity problem in LDA, we introduce another

criterion here, i.e. we use the difference form other than the

quotient form to formulate the criterion.

We further add a constraint WT W = I to avoid trivial

solution, where I is m × m identity matrix. Then the new

criterion can be written as

W∗ = arg max
W∈R

d×m

WT W=I

tr
(
WT (Sb − γSw)W

)
(7)

When the projection dimensionality is d, namely, the data

is in the original space without dimensionality reduction, we

let the value of this criterion be equal to zero so that the op-

timal value could reach the highest point in the reduced sub-

space. Thus, we have

max
W∈R

d×d

WT W=I

tr
(
WT (Sb − γSw)W

)
= 0

⇒ tr (Sb − γSw) = 0

⇒ γ =
trSb

trSw

Our goal is to extract the optimal dimensionality so that

the optimal value reaches the maximum. Then the optimiza-

tion problem can be formulated as follows:

W∗ = arg max
m∈[1,...,d]

max
W∈R

d×m

WT W=I

tr

(
WT (Sb − trSb

trSw
Sw)W

)

(8)

Denote W ∈ R
d×m by W = [w1,w2, ...,wm], where

wi(i = 1, 2, ...m) are d-dimensional column vectors. Sup-

pose the value of m is given, according to Ky Fan’s Theorem

[6], when w1,w2, ...,wm are the first m largest eigenvectors

of Sb − trSb

trSw
Sw, the optimal value of the above optimization

problem is
∑m

i=1 λi, where λi(i = 1, 2, ..., m) are the first m
largest eigenvalues of Sb − trSb

trSw
Sw. Thus, when m is equal

to the number of positive eigenvalues of Sb − trSb

trSw
Sw, the

optimal value reaches the maximum. Therefore, the optimal

solution of the optimization problem in Eq. (8) can be explic-

itly calculated by eigenvalue decomposition.

The algorithm is described in Table 1. From the algorithm

we can see, the singularity problem in LDA does not exist in

it naturally.

0. Preprocessing: eliminate the null space of the co-

variance matrix of data, and obtain new data X =
[x1,x2, ...,xn] ∈ R

d×n, where rank(X) = d

1. Input:

X = [x1,x2, ...,xn] ∈ R
d×n

2. calculate Sw and Sb according to Eq. (2) and Eq. (3)

3. calculate the eigenvalues and the corresponding eigen-

vectors of Sb − trSb

trSw
Sw

4. Select the m largest eigenvectors to form W, where m
is equal to the number of positive eigenvalues of W.

5. Output:

y = WT x, where W ∈ R
d×m and WT W = I.

Table 1. Algorithm of extracting the optimal dimensionality
for discriminant analysis

4. KERNELIZATION FOR NONLINEAR
EXTENSION

In this section we show that, using the kernel trick, it can be

easy to extend the linear projections of our algorithm to the

nonlinear case.

Suppose the data is mapped from the original input space

to a higher dimensional Hilbert space with a nonlinear map-

ping φ : x → F . If the algorithm only needs to calcu-

late the inner product of data pairs, using a kernel function

k(xi,xj) = φ(xi) · φ(xj), it can be performed in the new
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feature space without the explicit function of mapping. An

popular choice of the kernel function is the Gaussian kernel

k(xi,xj) = exp

(
−‖xi − xj‖2

2σ2

)
(9)

For convenience, we denote the data matrix in the feature

space by X = [φ(x1), φ(x2), ..., φ(xn)]. From the view of

graph [7], Sw and Sb can be reformulated as

Sw = XLwXT (10)

Sb = XLbXT (11)

where Lw and Lb are the Laplacian matrix on graph.

A Laplacian matrix is defined as D − S, where S is the

similarity matrix of graph, and D is a diagonal matrix, whose

entries are column(or row since S is symmetric) sums of S,

Dii =
∑

j Sji. For Lw, the entities of the similarity matrix

are defined as follows

Sij =
{

1
nk

0
xi and xj belong to class k

otherwise
(12)

For Lb, the entities of the similarity matrix are defined as fol-

lows

Sij =
{

1
n − 1

nk
1
n

xi and xj belong to class k
otherwise

(13)

Using the kernel function, the kernel matrix K = XT X
can be calculated. According to Eq. (10) and Eq. (11), we

have

tr(Sw) = tr(XLwXT ) = tr(LwXT X) = tr(LwK) (14)

tr(Sb) = tr(XLbXT ) = tr(LbXT X) = tr(LbK) (15)

In the feature space, W can be expressed as W = Xα,

then

WT (Sb − trSb

trSw
Sw)W = αT KLKα (16)

WT W = αT XT Xα = αT Kα (17)

where L = Lb − trSb

trSw
Lw. Then the optimization problem in

Eq. (8) in the feature space can be rewritten as

α∗ = arg max
m∈[1,...,n]

max
α∈R

n×m

αT Kα=I

tr
(
αT KLKα

)
(18)

The solution of Eq. (18) can be obtained by solving the gen-

eralized eigenvalue decomposition problem as

KLKαi = μKαi (19)

αi should be resized as 1√
αT

i Kαi

αi to satisfy the con-

straint of αT Kα = I.

Finally we get the projection matrix W∗ = Xα∗, where

α∗ ∈ R
n×m and m is the number of positive eigenvalues of

KLK.

With the projection matrix W∗, every data point x can be

projected as y = W∗T x = α∗T XT x, where XT x can be

calculated by the kernel function.

number method Accuracy(%) Std. Dev.(%)

3 LDA 86.2 2.6

NLDA 90.1 2.1

DLDA 86.1 2.3

ODLDA 91.0 2.2

4 LDA 89.4 2.2

NLDA 92.8 1.6

DLDA 91.2 1.8

ODLDA 94.2 1.6

5 LDA 90.6 2.3

NLDA 94.3 1.8

DLDA 93.7 1.8

ODLDA 96.0 1.5

6 LDA 91.5 2.0

NLDA 94.7 1.6

DLDA 95.8 1.4

ODLDA 97.0 1.3

Table 2. Experimental results on the AT&T face database.

5. EXPERIMENTS

We evaluated our algorithm (denoted as ODLDA here) on two

popular databases, and compared it with LDA and its two

variants, null space LDA(denoted as NLDA)[2] and direct

LDA(denoted as DLDA)[3]. As it is very hard to determine a

suitable parameter in Eq. (9) to achieve a good performance,

we do not evaluate the kernel version of our algorithm.

PCA is used as a preprocessing step to eliminate the null

space of data covariance matrix St. For LDA, due to the sin-

gularity problem in it, we further reduce the dimension of data

such that the within-class scatter matrix Sw is nonsingular.

In each experiment, we randomly select several samples

per class for training and the remaining samples are used for

testing. the average results and standard deviations are re-

ported over 50 random splits. The classification is based on

k-nearest neighbor classifier(k = 1 in these experiments).

The experimental results are reported in Table 2 and Table

3. In the following we describe the details of each experiment.

5.1. Face recognition

The AT&T face database (formerly the ORL database) in-

cludes 40 distinct individuals and each individual has 10 dif-

ferent images. Some images were taken at different times,

and have variations [8] including expression and facial de-

tails. Each image in the database is of size 112× 92 and with

256 gray-levels.

In this experiment, each image is down-sampled to the

size of 28 × 23 to save the computation time. we randomly

select 3,4,5 or 6 samples per class for training and the re-

maining samples for testing. As can been seen in Table 2,

the results of our method is much better than those of LDA
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number method Accuracy(%) Std. Dev.(%)

4 LDA 77.3 2.6

NLDA 81.8 3.0

DLDA 80.2 2.3

ODLDA 83.6 2.7

6 LDA 82.1 1.9

NLDA 86.3 1.8

DLDA 85.7 1.8

ODLDA 88.7 1.7

8 LDA 84.8 1.3

NLDA 89.0 1.4

DLDA 89.7 1.6

ODLDA 91.7 1.5

12 LDA 88.0 1.4

NLDA 91.7 1.3

DLDA 94.0 1.2

ODLDA 95.3 1.2

Table 3. Experimental results on the COIL-20 object
database.

whether in terms of accuracy or stability, and also outperform

those of the two popular variants of LDA. It is interesting to

note that the optimal dimensionality found by our method is

just c−1, where c is the class number. That is to say, the num-

ber of positive eigenvalues of Sb− trSb

trSw
Sw is just equal to the

maximum number that LDA can obtain. It illustrates the facts

that the projection dimensionality in LDA should not less than

c − 1, and that when the projection dimensionality is c − 1,

LDA would reach its maximum performance.

5.2. Object recognition

The COIL-20 database [9] consists of images of 20 objects

viewed from varying angles at the interval of five degrees,

resulting in 72 images per object.

In this experiment, each image is down-sampled to the

size of 32 × 32 to save the computation time. we randomly

select 4,6,8 or 12 samples per class for training and the re-

maining samples for testing.

Similar to the face recognition experiment, the results of

our method are much better than those of LDA, and the op-

timal dimensionality found by our method is also just equal

to c − 1. One possible reason of our method outperforming

LDA and its variants may be that our method does not exist

the singularity problem. Thus some important discriminant

information would not lose during the process of dimension-

ality reduction.

6. CONCLUSIONS

The singularity problem is one of the most serious drawbacks

in LDA which makes it hard to work. Although many meth-

ods have been proposed to solve this problem, the intrinsic

problem in theory still exists. Another problem is the deter-

mination of the optimal dimensionality for discriminant anal-

ysis. Traditional LDA cannot determine the optimal dimen-

sionality since the optimal value of the criterion in LDA is

monotonic with respect to projection dimensionality, and this

important issue has often been neglected previously. In this

paper, we propose a new algorithm to address the two prob-

lems. The optimal dimensionality can be determined based

on a new criterion, and the singularity problem does not oc-

cur intrinsically in the new algorithm. Two image databases

have been used to validate our method. The experimental re-

sults show that our method is effective and the performances

are much higher in comparison to LDA.
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