
THE FAST CORRENTROPY MACE FILTER

Kyu-Hwa Jeong, Seungju Han, Jose C. Principe

Computational NeuroEngineering Laboratory
Department of Electrical and Computer Engineering
University of Florida, Gainesville, FL 32611 U.S.A.

E-mail: {khjeong, han, principe}@cnel.ufl.edu

ABSTRACT

In this paper, we implement the newly introduced correntropy

MACE filter using the Fast Gauss Transform (FGT). The Cor-

rentropy MACE filter is a nonlinear extension to the MACE

filter using the correntropy function in a feature space non-

linearly related to the input. The correntropy MACE outper-

forms the traditional linear MACE in both generalization and

rejection abilities. However, in practice, the drawback of the

correntropy MACE filter is its computation complexity. This

paper present a fast version of the correntropy MACE by us-

ing the FGT idea and validates the approximation with results

in Synthetic Aperture Radar (SAR) image recognition.

Index Terms— Correntropy MACE, Fast Gauss Trans-

form (FGT), Synthetic Aperture Radar (SAR) image recogni-

tion.

1. INTRODUCTION

Cross-correlating an input data with a synthesized template is

a central concept to determine whether an object of interest is

present or not. The advantages of correlation filter are sim-

plicity and shift invariance property [1][2]. The best known

correlation filter is the minimum average correlation energy

(MACE) filter [3]. The MACE minimizes the average corre-

lation energy of the output over the training images subject

to a peak constraint in the center of the space. The MACE

filter is generally known to be sensitive to distortions and has

been shown to have poor generalization properties, that is,

images in the recognition class but not in the training data set

are not recognized well. In order to overcome the problem of

the MACE, there have been several approaches for advanced

correlation filters[4]. The Correntropy MACE filter, recently

proposed in [5] is a new approach to utilize higher order mo-

ment information of the image structure in a new reproducing

kernel Hilbert space (VRKHS) induced by correntropy [6].

Correntropy is a positive definite function, which measures a

nonlinear similarity between random variables (or stochastic
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processes) produced by the inclusion of the high-order statis-

tics of the input images. The correntropy MACE filter outper-

forms the traditional linear MACE in both generalization and

rejection abilities in object recognition. In practice, the draw-

back of the proposed correntropy MACE filter is its compu-

tation complexity. The output of the correntropy MACE filter

is obtained by computing the product of two matrices, whose

computation time depends on the image size and the number

of training images. Each element involves a double summa-

tion of weighted kernel functions. Therefore, each elements

of the matrix requires O(d2) computations, where d is the

number of pixels for one image. When the number of training

images is N , the total computation complexity of one test out-

put is O(d2N(N + 1)). This quickly becomes too complex

in practical settings.

This paper presents a way to reduce the computation by

utilizing clustering and a Hermite expansion of the Gaussian

function which has been called the Fast Gauss Transform (FGT)

[7]. In the correntropy MACE case, we cannot use the FGT

directly, however, this paper shows how the complexity can

be reduced to O(pkdN(N + 1)), where p is the order of the

Hermite approximation and k is the number of clusters uti-

lized in FGT.

The organization of the paper is as follows. We present

the correntopy MACE filter in section 2. In section 3, we

review the FGT briefly and modify the basic algorithm to the

Fast correntropy MACE. In section 4, we present simulation

results for SAR image recognition using the MSTAR public

release data [8] and section 5 summarizes and points out some

further research.

2. THE CORRENTROPY MACE FILTER

Correntropy is a generalized similarity measure between two

arbitrary random variables X and Y defined by

V (X, Y ) = E[< Φ(X), Φ(Y ) >] = E[k(X, Y )], (1)

where E is the mathematical expectation and k is a kernel

function that obeys the Mercer’s conditions. In this paper, we

II  6131424407281/07/$20.00 ©2007 IEEE ICASSP 2007



use the Gaussian kernel, which is the most widely used Mer-

cer kernel. Correntropy is a positive function therefore it in-

duces a new reproducing kernel Hilbert space called VRKHS.

Given data samples {xi}d
i=1, the correntropy kernel creates

another data set {f(xi)}d
i=1 preserving the similarity measure

as [9]

V (i, j) = E[k(xi − xj)] = E[f(xi)f(xj)]. (2)

According to (2), there exists a nonlinear mapping f which

makes the correntropy of xi the correlation of f(xi). As the

conventional MACE filter is derived by controlling correla-

tion output, the correntropy MACE is formulated by minimiz-

ing average correntropy energy in the d dimensional VRKHS.

Let the ith image vector be xi = [xi
1 xi

2 · · · xi
d ]T and

the filter be h = [h1 h2 · · · hd]T , where T denotes trans-

pose. We denote the transformed training image matrix and

filter vector whose size are d × N and d × 1, respectively, be

FX = [fx1 , fx2 , · · · , fxN
], (3)

fh = [f(h1) f(h2) · · · f(hd)]T , (4)

where fxi
= [f(xi

1) f(xi
2) · · · f(xi

d)]
T for i = 1, · · · N .

Given data samples, we can estimate the cross correntropy

between ith training image vector and the filter as

voi[m] =
1
d

d∑
n=1

f(hn)f(xi
n−m), (5)

for all the lags m = −d + 1, · · · d − 1. Then the correntropy

energy of the ith image is given by

Ei = vT
oivoi = fT

h Vifh, (6)

where, Vi is the d × d correntropy matrix as

Vi =

⎛
⎜⎜⎜⎝

vi(0) vi(1) · · · vi(d − 1)
vi(1) vi(0) · · · vi(d − 2)

...
...

. . .
...

vi(d − 1) · · · vi(1) vi(0)

⎞
⎟⎟⎟⎠ . (7)

Each element of the correntropy matrix is computed without

explicitly knowing the mapping function f by

vi(l) =
d∑

n=1

k(xi
n − xi

n+l), (8)

for l = 0, · · · d − 1. Since our objective is to minimize the

average correntropy energy in feature space, we can formulate

the optimization problem by

min fT
h VXfh subject to FT

Xfh = c, (9)

where, VX = 1
N

∑N
i=1 Vi and c is the desired vector for all

the training images. Since the correntropy matrix VX is pos-

itive definite, there exists an analytic solution to the optimiza-

tion problem in the new finite dimensional VRKHS. Then the

correntropy MACE filter in feature space becomes

fh = V−1
X FX(FT

XV−1
X FX)−1c. (10)

In order to test this filter, let Z be the matrix of L vector test-

ing images and FZ be the transformed matrix of Z, then the

L × 1 output vector is given by

y = KZX(KXX)−1c, (11)

where KZX = FT
ZV−1

X FX and KXX = (FT
XV−1

X FX)−1.

KXX is N ×N symmetric matrix and KZX is L×N matrix,

whose (i, j)th element is computed by

(KXX)ij =
d∑

l=1

d∑
k=1

wlkf(xi
l)f(xj

k)

∼=
d∑

l=1

d∑
k=1

wlkk(xi
l−xj

k), (12)

(KZX)ij =
d∑

l=1

d∑
k=1

wlkf(zi
l )f(xj

k)

∼=
d∑

l=1

d∑
k=1

wlkk(zi
l−xj

k), (13)

where wlk is the (l, k)th element of V−1
X .

The final output expressions in (12) and (13) are obtained

by approximating f(xl)f(xk) and f(zl)f(xk) by k(xl − xk)
and k(zl −xk), respectively, which holds good on an average

because of (2). Hence, we do not need to find the transfor-

mation f(·) as expected by the ”kernel trick”. Applying an

appropriate threshold to the output of (11), one can detect and

recognize the testing data without generating the composite

filter in feature space.

3. IMPLEMENTATION USING THE FAST GAUSS
TRANSFORM

3.1. The Fast Gauss Transform

In many problems in mathematics and engineering, the func-

tion of interest can be decomposed into sums of pairwise in-

teractions among a set of sources. In particular, this type of

problem is found in nonparametric probability density esti-

mation as

G(z) =
d∑

j=1

qjk(z − xj), (14)

where k is a kernel function centered at the source points xj

and qj are scalar weighting coefficients. With the Gaussian

kernel, (14) can be interpreted as a ”Gaussian” potential filed

due to sources of strengths qj at the points xj , evaluated at

the target point z. Suppose that we have M evaluation target

points, then the computation of (14) requires O(dM) calcula-

tions, which constrains the computation bandwidth for large

data sets d and M in real world applications. The Fast Gauss

Transform (FGT) can reduce the complexity to O(d+M) for
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(14). The FGT is one of a class of very interesting and im-

portant families of fast evaluation algorithms that have been

developed over the past decades to enable rapid calculation

of approximations at arbitrary accuracy. The basic idea is to

cluster the sources and target points using appropriate data

structures and the Hermite expansion, and then reduce the

number of summations with a given level of precision.

3.2. The Fast Correntropy MACE

The major part of the computation burden in the correntropy

MACE filter is given by

K =
d∑

i=1

d∑
j=1

wije
−(zi−xj)

2/2σ2
. (15)

This is very similar to the density estimation problem that

evaluates at d targets zi with given d source samples xj . How-

ever, the weighting factor wij in (15) are dependent on both

target and source, which is different from the original FGT ap-

plications, where the weights q = [q1, · · · , qd]T is always the

same at every evaluation target points. In our case, the weight

vector wi = [wi1, · · · , wid]T is varying on every evaluation

point zi. We can say that (15) is a more general expression

than the FGT that can be written as

K =
d∑

i=1

Gi(z), (16)

where

Gi(z) =
d∑

j=1

wijk(zi − xj). (17)

This means that clustering and the Hermite expansion should

be performed at every target zi with a different weight vector

wi, which causes an extra computation for clustering. How-

ever, since the sources are clustered in the FGT, if one ex-

presses the clustered sources about its center into the Hermite

expansion, then there is no need to do clustering and the Her-

mite expansion at every evaluation. The only thing that is

necessary is to use different weight vectors at every evalua-

tion point. This process does not require additional complex-

ity compare to the original FGT formulation except that more

storage is required to keep the weight vectors. By using the

Hermite expansion around the target s, the Gaussian centered

at xj evaluated at zi can be obtained by

exp
{
− (zi − xj)2

2σ2

}
=

p−1∑
n=0

1
n!

(
xj − s√

2σ

)n

hn

(
zi − s√

2σ

)
+ε(p),

(18)

where the Hermite function hn(x) is defined by

hn(x) = (−1)n dn

dxn
(exp(−x2)). (19)

Also, in this paper, we use a simple greedy algorithm for clus-

tering [10], which computes a data partition with a maximum

radius at most twice the optimum. This clustering method

and the Hermite expansion with order p requires O(pd). In

the case of (12) and (13), since the number of sources and

targets are the same, they can be interchanged, that is, the test

image can be the source so that the clustering and Hermite

expansion can be done only one time per test. Thus K in (16)

can be approximated by

K ≈
d∑

i=1

∑
B

p−1∑
n=0

1
n!

hn

(
xi − sB√

2σ

)
Cn(B), (20)

where B represents a cluster with a center sB and Cn(B) is

given by

Cn(B) =
∑

zj ,wij∈B

wT
ij

(
zj − sB√

2σ

)n

. (21)

From (20), we can see that evaluation at k expansions at all the

target costs O(pkd) work, so the total number of operations

is O(pd(k + 1)) per computation of each element in (12) and

(13). The final aim is to obtain the output of the correntropy

MACE filter with N training images and L test images. In

order to compute the output of one test image, the original

direct method requires O(d2N(N + 1)) operations and we

can reduce the operation count to O(pd(k + 1)N(N + 1)) by

applying this enhanced FGT. Typically p and k are much more

small values than d and N in our application. Additionally,

clustering with the test image is performed only one time per

test which reduces the computation time even more.

4. SIMULATIONS

In this paper, we illustrate the computation speed improve-

ment and the effect on accuracy of the fast correntropy MACE

filter in SAR image recognition using the MSTAR (Moving

and Stationary Target Acquisition and Recognition) data which

is a standard dataset in the SAR ATR community, allowing re-

searchers to fairly test and compare their ATR algorithms[11].

In this simulation, we selected the BTR60 (Armored personal

carrier) as a target (true class) and the T62 (Tank) as a con-

fuser (false class). The goal is to design a filter which will

recognize the BTR60 without being confused by the T62. In

this paper, we use as training images aspect angles of 0 to 179

degree at a 17 degree depression angle. Training images were

selected at every odd index number from a total of 120 ex-

emplar images for each vehicles ( so the number of training

images, N , is 60). Testing is conducted with all of 120 exem-

plar images for each vehicle. All the images are cropped to be

centered with the size of 64×64 pixels (d=4096). In this sim-

ulation, computation time is clocked with MATLAB version

7.0 on a 2.8GHz Pentium 4 processor with 2GByte of RAM.

Table 1 shows the comparison of computation time for

(12) and (13) between the original method (direct) and the
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Fig. 1. Comparison of ROC curves

Table 1. Comparison of computation time and error for one test

image between the direct method and the FGT method with p = 4
and k = 4

Direct (sec) FGT (sec) Error

Train : KXX 7622.8 68.31 9.9668e-06

KZX 122.8 1.15 8.7575e-06

Test(true)output 2.8225e-03

KZX 128.6 1.18 3.8844e-05

Test(false)output 8.4377e-03

proposed fast method with a Hermite approximation order

p = 4 and the number of cluster k = 4. The test time and

absolute error were obtained by averaging 120 test images

results for one test image. The FGT method is 100 times

faster than the direct method with a reasonable error preci-

sion. Fig. 1 presents the comparison in terms of ROC curves

of the MACE, the correntropy MACE and the fast correntropy

MACE. Form the ROC curve we can observe that the approx-

imation with p = 4 and k = 4 is very close to the original

ROC curve and it also tells us that detecting ability of the pro-

posed fast correntropy MACE filter is much better than that

of the MACE. Table 2 shows the effect of different orders(p)

and clusters(k). We can conclude that the computation time

increases roughly proportional to p and k, while the absolute

error linearly decreases.

Table 2. Comparison of computation time and error for one test

image in the FGT method with a different number of orders and

clusters
Order Time (sec) Error Cluster Time (sec) Error

2 0.8116 1.48e-02 2 0.7181 5.61e-02

6 1.5140 8.23e-04 6 1.6693 3.87e-04

10 2.2119 8.58e-06 10 2.5595 4.71e-05

14 2.8533 4.16e-07 14 3.5660 6.93e-06

20 3.8097 1.25e-09 20 5.3067 1.14e-06

5. CONCLUSIONS

In this paper, we have implemented and evaluated the fast ver-

sion of the correntropy MACE filter for object recognition

using a modified Fast Gauss Transform (FGT). We presented

experimental results for the SAR object recognition using the

MSTAR public release data. Using the recently introduced

correntropy idea, the conventional MACE filter can be imple-

mented in a new RKHS that has the same dimension as the in-

put data and it outperforms the conventional MACE. In prac-

tice, the drawback of the proposed correntropy MACE filter

is the computation complexity due to the double summation

of weighted pairwise interactions with Gaussian kernels that

requires O(d2N(N + 1)) computation. With the generalized

FGT, we can implement the fast correntropy MACE filter in

only O(pkdN(N +1)) for one test image. Simulation results

shows that the fast correntropy MACE is much faster than the

direct method and preserves the good performance.
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