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ABSTRACT

The recent years have witnessed a surge of interest in graph
based semi-supervised learning. However, despite its exten-
sive research, there has been little work on graph construc-
tion. In this study, employing the idea of gradient descent,
we propose a novel method called Iterative Smoothness Max-
imization (ISM), to learn an optimal graph automatically for
a semi-supervised learning task. The main procedure of ISM
is to minimize the upper bound of semi-supervised classi ca-
tion error through an iterative gradient descent approach. We
also prove the convergence of ISM theoretically, and nally
experimental results on two real-world data sets are provided
to demonstrate the effectiveness of ISM.

Index Terms— Semi-Supervised Learning (SSL), Clus-
ter Assumption, Gaussian Function, Gradient Descent

1. INTRODUCTION

In many practical applications of pattern classi cation and
data mining, one often faces a lack of suf cient labeled data,
since labeling often requires expensive human labor and much
time. However, in many cases, large number of unlabeled data
can be far easier to obtain.
Consequently, Semi-Supervised Learning (SSL) methods,

which aim to learn from partially labeled data, are proposed[1].
In general, these methods can be categorized into two classes:
transductive learning(e.g. [2]) and inductive learning(e.g. [3]).
The goal of transductive learning is to estimate the labels of
the given unlabeled data, whereas inductive learning tries to
induce a decision function which has a low error rate on the
whole sample space.
In recent years, graph based semi-supervised learning has

become one of the most active research areas in SSL commu-
nity [4]. The key to graph based SSL is the cluster assumption
[5]. It states that (1) nearby points are likely to have the same
label; (2) points on the same structure (such as a cluster or a
submanifold) are likely to have the same label.
Based on the above assumptions, graph-based SSL uses

a graph G =< V, E > to describe the structure of a data
set, where V is the node set corresponding to the labeled and
unlabeled examples in the data set, and E is the edge set. In

most of the traditional methods[2][5][6], each edge eij ∈ E
is associated with a weight, usually computed by Gaussian
functions which re ect the similarities between pairwise data
points, i.e.

wij = exp (−‖xi − xj‖2/(2σ2)) (1)

However, as pointed out by [1], although graph construction
is at the heart of graph based SSL, it is still a problem that
has not been well studied. More concretely, the variance σ
in Eq.(1) can affect the nal classi cation result signi cantly,
which can be seen from the toy example shown in Fig.1, but
according to [2], there has been no reliable approach that can
determine an optimal σ automatically so far.
To address such a problem, we propose a gradient based

method, Iterative Smoothness Maximization (ISM), which aims
at learning both data labels and the optimal hyperparameter
of the Gaussian function for constructing the graph. The ISM
algorithm rst establishes a cost function composed of two
parts, i.e. the smoothness and the tness of the data labels,
to measure how good the classi cation result of the Semi-
Supervised Learning task is. Then ISM will minimize this
cost function by alternating the smoothness maximization step
and the graph reconstruction step. We will prove theoretically
the convergence of the ISM algorithm.
The rest of this paper is organized as follows. In section 2,

we introduce some works related to this paper. The ISM algo-
rithm is presented in detail in section 3. In section 4, we ana-
lyze the convergence property of the algorithm. Experimental
results on two real-world data sets are provided in section 5,
followed by the conclusions and future works in section 6.

2. NOTATIONS AND RELATEDWORKS

In this section we will introduce some notations and brie y
review some related works of this paper.
Given a point set X = {x1, · · · ,xl,xl+1, · · · ,xn} and

a label set L = {1, · · · , c}, where the rst l points in X are
labeled as ti ∈ L, while the remaining points are unlabeled.
Our goal is to predict the labels of the unlabeled points1. We

1In this paper we will concentrate on the transductive setting. One can
easily extend our algorithm to inductive setting using the method introduced
in [7].
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Classification Result with Sigma=0.4

Fig. 1. Classi cation results on the two-moon pattern using the method in [2], a powerful transductive approach operating on
graph with the edge weights computed by a Gaussian function. (a) toy data set with two labeled points; (b) classi cation results
with σ = 0.15; (c) classi cation results with σ = 0.4. We can see that a small variation of σ will cause a dramatically different
classi cation result.

denote the initial labels in data set by an n× c matrix T . For
each labeled point xi, Tij = 1 if xi is labeled as ti = j and
Tij = 0 otherwise. For unlabeled points, the corresponding
rows in T will be zero. The classi cation result on the data set
X is also represented as an n×cmatrix F = [FT

1 , . . . , F
T
n ]T ,

which determines the label of xi by ti = argmax1≤j≤c Fij .
In graph based semi-supervised learning, we construct the
n × n weight matrix W for graph G with its (i, j)-th entry
Wij = wij computed by Eq.(1) , and Wii = 0. The degree
matrix D for graph G is de ned as an n × n matrix with its
(i, i)-entry equal to the sum of the i-th row ofW .
Based on the above preliminaries, Zhou et al proposed the

Learning with Local and Global Consistency (LLGC) algo-
rithm to tackle the SSL problem by minimizing the following
cost function[2]:

Q=
1
2

⎡
⎣ n∑
i,j=1

Wij

∥∥∥∥∥ Fi√
Dii

− Fj√
Djj

∥∥∥∥∥
2

+μ
n∑

i=1

‖Fi−Ti‖2
⎤
⎦ (2)

The rst term measures the smoothness of the data labels,
and the second term restricts that a good classifying function
should not change too much from the initial label assignment.
The regularization parameter μ > 0 adjusts the tradeoff be-
tween these two terms. Thus, the optimal classi cation func-
tion can be obtained by: F ∗ = argminF Q.
As we noted in section 1, one of the problems existing

in these graph based methods is that the hyperparameter (i.e.
σ in Eq.(1)) can affect the nal classi cation results signi -
cantly. Therefore, many methods have been proposed to de-
termine the optimal hyperparameter automatically, such as the
Local Scaling [8] and Minimum Spanning Tree [6] methods.
Although they can work well empirically, they are heuristic,
and thus lack a theoretical foundation.

3. ITERATIVE SMOOTHNESS MAXIMIZATION

In this section we will introduce the main procedure of the
Iterative Smoothness Maximization (ISM) algorithm.

3.1. Gradient Computing

We propose to learn the optimal σ through a gradient descent
procedure. More concretely, employing the cost function pro-
posed in Eq.(2), we can compute the gradient ofQ(F, σ)w.r.t.
σ with F xed as F ∗ = argminF Q.

∂Q(F, σ)
∂σ

=
∂

∂σ

⎡
⎣μ n∑

j=1

||Fj − Tj ||2+
n∑

i,j=1

Wij

(
Fi√
Dii

− Fj√
Djj

)2
⎤
⎦

=
n∑

i,j=1

∂

∂σ

⎡
⎣Wij

(
Fi√
Dii

− Fj√
Djj

)2
⎤
⎦

=
n∑

i,j=1

⎧⎨
⎩∂Wij

∂σ

[
Fi√
Dii

− Fj√
Djj

]2

−Wij

[
Fi√
Dii

− Fj√
Djj

]

·
⎡
⎣ Fi√

D3
ii

∂Dii

∂σ
− Fj√

D3
jj

∂Djj

∂σ

⎤
⎦

⎫⎬
⎭ (3)

Using the Gaussian function to measure similarity, we get

∂Wij

∂σ
=
∂ exp(− d2

ij

2σ2 )
∂σ

=
d2ij exp(−

d2
ij

2σ2 )
σ3

(4)

∂Dii

∂σ
=
∂

∑
jWij

∂σ
=

∑
j

∂Wij

∂σ
=

∑
j

d2ij exp(− d2
ij

2σ2 )
σ3

(5)

3.2. Learning Rate Selection in Gradient Descent

In gradient descent, the hyperparameter is updated as σnew =
σold−η ∂Q∂σ |σ=σold

; learning rate η affects the performance of
gradient descent severely. In ISM, η is selected dynamically
to accelerate convergence of the algorithm.
If we x F , the cost functionQ only varies with σ. There-

fore, we plot the cost function curve in Fig.2, in which the
current value of σ is denoted by point A. In the case where
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Fig. 2. Possible regions σ might appear during iteration,
where B represents the region between A and the minimum
point, O. Regions C and D are separated by point A* satisfy-
ing Q(σA∗) = Q(σA).

the cost function has multiple local minima, this gure could
be considered as a local region of the cost function curve.
After updating σ with gradient descent, its new value σ̂1

might appear in three regions : B, C or D. In ISM, we hope the
cost function decreases monotonically to guarantee the con-
vergence of the algorithm. Also, to simplify our method, we
hope the value of σ avoids oscillation. Hence, B is the ideal
region for σ̂1, and σ̂1 should be near the minimum point O. If
σ̂1 appears in region C or D, then the learning rate is too large
and we set η to equal ηs, the value of which is small enough to
guarantee that with ηs, the new variance σ appears in region
B. On the other hand, if σ̂1 appears in region B, we increase
the learning rate by doubling it and calculate σ̂2 with the new
η. If σ̂2 appears in region C or D, we resume the original
learning rate and output σ̂1 as the variance in this iteration;
otherwise, we output σ̂2.

3.3. Implementation of Iterative Smoothness Maximiza-
tion

The implementation details of the ISM algorithm is as follow-
ing:

1. Initialization. σ = σ0, total iteration steps N0, initial
learning rate η0 and small learning rate ηs2.

2. Calculate the optimal F . ∂Q
∂F = 0 ⇒ Fn+1 = (1 −

α)(I − αS(σn))−1T where S = D−1/2WD−1/2 and
α = 1/(1 + μ).3[2]

3. Update σ with gradient descent and adjust learning rate
η. σ̂1 = σn − η ∂Q∂σ |σ=σn

(a) IfQ(Fn+1, σ̂1)<Q(Fn+1, σn) and sgn
(
∂Q
∂σ |σ=σ̂1

)
= sgn

(
∂Q
∂σ |σ=σn

)
, then η=2η, σ̂2=σn−η ∂Q∂σ |σ=σn

.

2In order to guarantee the convergence of the algorithm, ηs is set to be
close to 0.

3The parameter α used in our method is simply xed at 0.99.[2]

i. If Q(Fn+1, σ̂2) < Q(Fn+1, σn) and
sgn

(
∂Q
∂σ |σ=σ̂2

)
=sgn

(
∂Q
∂σ |σ=σn

)
, then σn+1=σ̂2

ii. Else σn+1 = σ̂1, η = η/2

(b) Else η = ηs, σn+1 = σn

4. If n > N0, quit iteration and output classi cation re-
sult; else, go to step 2.

4. CONVERGENCE STUDY OF ITERATIVE
SMOOTHNESS MAXIMIZATION

Since the algorithm proposed here is iterative, it is crucial to
study its convergence property. Without loss of generality, we
only consider binary classi cation here, which can be easily
extended to the multi-class case. The cost function could be
written as Q(f, σ) = fT (I − S)f + μ(f − t)T (f − t).

∂Q

∂f
= 0⇔ f∗ = (1− α)(I − αS)−1t (6)

While the Hessian matrix is as follows:

H =
∂2Q

∂f2
= I − S + μI (7)

∀x ∈ Rn, x �= 0,

xTHx=xT (I − S)x+ μxTx

=
n∑

i,j=1

Wij

(
1√
Dii

xi− 1√
Djj

xj

)2

+μ
n∑

i=1

x2
i>0 (8)

Hence, the Hessian matrix is positive de nite, moreover, f∗ is
the unique zero point of ∂Q

∂f . Therefore, f
∗ is the global min-

imum of Q with σ xed. The property of f∗ being the global
minimum ofQ leads to the following inequality: Q(fn+1, σn) <
Q(fn, σn), where fn+1 = f∗. In step 3 of ISM, σn+1 is
calculated as σ̂n+1 = σn − η ∂Q

∂σn
, with the learning rate in

gradient descent selected to guarantee that Q(fn+1, σn+1) <
Q(fn+1, σn). Thus, in every iteration of ISM, the following
inequality is guaranteed:

Q(fn+1, σn+1) < Q(fn+1, σn) < Q(fn, σn) (9)

which implies that the cost functionQ(σ, f) decreases mono-
tonically. Moreover, since Q(σ, f) > 0, Q is lower bounded
by zero. Hence, the algorithm is guaranteed to converge. Ac-
tually, our method converges after 29 steps of iteration on
Two-moon data set with σ0 = 1.

5. EXPERIMENTS

We will validate our method on two real world data sets in
this section.
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5.1. Digit Recognition

In this experiment, we will focus on classifying handwritten
digits. We use images of digits 1, 2, 3 and 4 from USPS4
handwritten 16 × 16 digits data set and there are 1005, 731,
658 and 652 samples in each class, with a total of 3046. We
employ Nearest Neighbor classi er and SVM[9] as baselines.
For comparison, we also provide the classi cation results of
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Fig. 3. Classi cation results on USPS data. (a) Changes of σ
during iteration (b) Recognition accuracies, with the horizon-
tal axis representing the number of randomly labeled samples.

LLGC method[2] in which the af nity matrix is constructed
by a Gaussian function with variance 1.25, which is tuned
with grid search. The number of labeled samples increases
from 4 to 50 and the test errors averaged over 50 random tri-
als are summarized in Fig.3(b), from which we can clearly see
the advantages of ISM and LLGC. And obviously the hyper-
parameter in LLGC resulted from grid search is suboptimal.

5.2. Object Recognition

In this section, we will address the task of object recognition
using the COIL-205 data set, a database of gray-scale images
of 20 objects. For each object there are totally 72 images of
size 128×128. Similar as digit recognition, we employ Near-
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Fig. 4. Object recognition results on COIL-20 data. (a)
Changes of σ during iteration (b) Recognition accuracies,
with the horizontal axis representing the number of randomly
labeled samples per class.

est Neighbor classi er and SVM as baselines. For compari-
son, we also test the recognition accuracy of LLGCmethod in
which the af nity matrix is constructed by a Gaussian func-
tion with variance 40, which is also tuned with grid search.
The number of labeled samples per class increases from 2 to

4http://www.kernel-machines.org/data.html
5http://www1.cs.columbia.edu/CAVE/software/softlib/coil-100.php

18 and the test errors averaged over 50 random trials are sum-
marized in Fig.4(b), from which we can clearly see the advan-
tages of ISM and LLGC, while in ISM the hyperparameter σ
is determined automatically.

6. CONCLUSIONS AND FUTUREWORKS

Employing the idea of gradient descent, we propose the It-
erative Smoothness Maximization algorithm in this paper, to
learn an optimal graph automatically for a semi-supervised
learning task. Moreover, the algorithm is guaranteed to con-
verge. Experimental results on both toy and real-world data
sets show the effectiveness of ISM for parameter selection
when only few labeled samples are provided. Although we
focus on learning hyperparameter σ in the Gaussian function,
our method can be applied to other kernel functions as well.
Besides the signi cant advantages of ISM, there are still

certain aspects that we can research more to improve the ef-
ciency of our method. This includes employing more ad-
vanced optimization algorithms to speed up convergence and
extending ISM to allow the use of different σ along different
directions.
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