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ABSTRACT

An image deformation algorithm is integrated with a Gaus-

sian process classifier for application to remote-sensing tasks

in which data is in the form of imagery. To combine these

disparate techniques, we introduce a novel kernel covariance

function for the Gaussian process that allows us to incorporate

the result of the image deformation algorithm into a rigorous

Bayesian classification framework. The resulting classifier is

completely non-parametric in the sense that no parameters or

hyperparameters must be learned. The promise of the pro-

posed algorithm is demonstrated on a data set of real, mea-

sured land mine data.

Index Terms— Classification, image deformation, Gaus-

sian processes, remote sensing, automatic target recognition.

1. INTRODUCTION

The goal of an automatic target recognition (ATR) task is to

correctly classify objects without the aid of a human. In this

work, we develop a general classification framework that is

applicable when data is in the form of imagery.

There are two basic approaches to solve the ATR problem

when data exists in the form of imagery. By directly using the

imagery itself, one operates at the image level. In contrast, if

features are extracted from the imagery, one operates at the

feature level. The data processing inequality [3] states that

any processing of data cannot increase the amount of infor-

mation that is contained in the data. This theorem implies that

information can be lost when one operates at the feature level

rather than at the original image level. Nevertheless, classifi-

cation is typically performed at the feature level, in which a

classifier is constructed for the extracted features.

Feature extraction can be a significant obstacle in many

remote-sensing applications. For example, in land mine de-

tection problems, models for the targets (or clutter) are typi-

cally not available. As a result, rather than fitting the data to

models and using the resulting model parameters as features,

one must typically rely on primitive features (e.g., the energy

in an image chip). In underwater mine detection problems,

features are often intimately linked to the result of the noto-

riously difficult task of image segmentation (into highlight,

shadow, and background regions).

Another drawback of the feature-based approach mani-

fests itself when a classifier is learned using training data from

one location, but then applied to testing data from a differ-

ent environment. The classifier can fail drastically because

the underlying statistics of the data (i.e., features) in each lo-

cation are typically different. This fact violates an implicit

assumption of the classifier that the statistics of the training

and testing data are identical. Lifelong learning [13] and al-

gorithms that account for concept drift [6] attempt to address

this problem, though those techniques require the knowledge

of labels of some objects in the new environment, which may

be infeasible in practice.

In this work, we develop a classification algorithm for

which feature extraction is obviated. Rather than describing

the data points (i.e., image chips) via features, the amount of

deformation required to deform each image chip into another

chip via an image deformation algorithm is used. Collec-

tively, these pairwise deformation quantities are used to form

the kernel covariance matrix of a Gaussian process classifier.

The result of taking this approach is a classification algorithm

that has no parameters or hyperparameters to be learned. In

turn, the inherently robust classifier should generalize well

when applied to data collected in different environments or

under different operating conditions.

The remainder of this paper is organized in the following

manner. In Section 2, the image deformation algorithm is de-

scribed. Gaussian processes for classification are explained

in Section 3. The proposed classification framework that in-

tegrates the image deformation technique with Gaussian pro-

cesses is outlined in Section 4. Experimental results of the

proposed approach on a real, measured remote-sensing data

set are shown in Section 5. A summary of the work and di-

rections for future work are outlined in Section 6.

2. IMAGE DEFORMATION

2.1. Introduction

Significant work has been conducted in the medical imaging

community on image registration [7] and image segmentation

[10] via non-rigid image deformation. The work we present

here is the first to apply image deformation techniques to an

ATR remote-sensing problem.
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An algorithm that permits large-scale deformations will

be necessary for our application because the deformation will

be applied to pairs of images that may be highly dissimi-

lar. Elastic material models [12], in contrast, are restricted to

small deformations because severe penalties discourage large

deformations. These elastic models may be sufficient in ap-

plications such as brain imaging in which only minor pertur-

bations are required, but they are not appropriate for our pur-

poses. Other approaches that linearize nonlinear models [1]

effectively assume that the deformation is small, which again

conflicts with our intent. Additionally, since our goal is to de-

velop a fully autonomous algorithm, approaches that require

a human to specify landmark points or to label regions in the

image must also be avoided. The viscous fluid model we em-

ploy in this work can account for large-scale deformations

while preserving the topology of structures in the original im-

age. Moreover, no human assistance is required.

2.2. Theory

In [2], a simplified Navier-Poisson viscous fluid model that

governs a non-rigid image deformation process is derived.

Specifically, the model explains how particles — which in

this case are the image pixels — “flow” in the image during

a deformation process that attempts to transform a template
image, T, into a study image, S. That is, the velocity, v, of

each pixel and its resulting displacement, u, (from its initial

location in the original template image) are determined via

this fluid model. This flow of pixels is driven by a set of body
forces, b, acting on the image pixels.

The interplay of these quantities to deform a template im-

age into a study image is expressed via a modified Navier-

Stokes equation,

μ∇2v(x, y) + (λ + μ)∇(∇ · v(x, y)) + b(x, y) = 0, (1)

where (x, y) indicates a specific pixel location in the image,

and ∇2 = ∇T∇ is the Laplacian operator. In (1), μ and

λ are the Lamé constants that control the relative amount of

constant-volume viscous flow and the propensity of a volume

to grow or shrink. The velocity at each (x, y) pixel location

in the image are the quantities for which (1) must be solved.

The velocity is defined in terms of the displacement as

v(x, y) =
∂u(x, y)

∂t
+

(
[v(x, y)]T ∇

)
u(x, y). (2)

The second term on the right-hand side of (2) accounts for

nonlinearities of the displacement, which in turn permit large-

scale deformations of the image.

The body forces drive the deformation process that de-

forms the template image into the study image. The body

force at the image location (x, y) at time t is defined to be

b(t)(x, y) = −α (T(x′, y′)− S(x, y)) (∇T(x′, y′)) (3)

where (x′, y′) = (x, y)− (u(t)
x (x, y), u(t)

y (x, y)) accounts for

the deformations that have transpired up until time t, and α
is a scalar that controls the relative magnitudes of the body

forces. It can readily be seen from (3) that the body forces act

to encourage the template and study images to match.

In summary, body forces manifested by a difference be-

tween the template and study images drive a system of partial

differential equations that is solved to obtain the velocities at

which each pixel in the image deforms. This process is con-

ducted iteratively until the deformed template image matches

the study image.

2.3. Implementation

To solve the partial differential equation (1), the spatial deriva-

tives are first discretized using a second-order central differ-

ence finite difference method. These equations can then be

re-written in the form of a matrix equation, which must be

solved for the pixel velocities. Here, the method of succes-

sive overrelaxation (SOR) is employed to solve the equation

at each iteration (i.e., time step) of the deformation process.

After solving for the velocities via SOR, forward Euler inte-

gration is applied to (2) by discretizing the temporal derivative

in the relationship between the velocity and the displacement.

After calculating the displacement for each pixel location

at one time instant, the entire process is repeated for the next

time step: the body forces are recomputed using (3), the ma-

trix difference equation is solved for the velocities using SOR,

and the Euler integration is performed again to obtain the up-

dated displacement. This process is repeated until the deform-

ing template image sufficiently matches the study image, in-

dicating convergence. Due to space constraints here, more

thorough implementation details are provided in [15].

3. GAUSSIAN PROCESSES

3.1. Introduction

In probit regression [8], the probability of label yi ∈ {+1,−1}
for the i-th data vector xi is

p (yi|xi) = Φ(yif(xi)) = Φ(yiw
T xi), (4)

where Φ is the cumulative density function of the standard

normal distribution, and w constitutes a classifier. In a para-
metric binary classification task, one wishes to learn the func-

tion f(xi) = wT xi — or equivalently the classifier w — that

will correctly classify new unlabeled data points.

Alternatively, non-parametric approaches avoid the explicit

parameterization of f , and hence do not obtain a classifier w
explicitly. Because the form of the classifier is not limited

to a specific parametric form (such as the simple inner prod-

uct in (4)), non-parametric techniques are more general than

parametric approaches. One such non-parametric technique,

Gaussian processes [11], places a prior on the space of latent
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functions f directly. The Gaussian process prior can then be

readily incorporated into a Bayesian framework for classifi-

cation [11, 14].

3.2. Theory

A Gaussian process (GP) is a collection of random variables,

any finite number of which has a joint Gaussian distribution.

A GP is fully specified by a mean function and a covariance

function. In classification problems, the mean function is typ-

ically taken to be the zero function, which we also assume.

The (kernel) covariance function Kij , which expresses the co-

variance between the value of a latent function f at the points

xi and xj , is usually chosen to be a Gaussian covariance func-

tion of the form

Kij = k(xi,xj) = exp
{
−1

2
g(xi,xj ; θ)

}
(5)

with

g(xi,xj ; θ) =
d∑

m=1

θm(xm
i − xm

j )2 (6)

and where xm
i is the m-th feature of xi and θ is a vector

of length-scale hyperparameters. The kernel function essen-

tially provides a measure of similarity between pairs of data

points; the hyperparameters θ weight the relative importance

and contribution of each feature in measuring this similar-

ity. Collecting these similarity measures for each pair of data

points then forms the kernel covariance matrix, K, of the GP.

The kernel covariance function Kij drives the entire Gaus-

sian process. In fact, the problem of learning a GP classifier

is simply the problem of learning the kernel function hyper-

parameters θ. With Kij defined and θ specified, making pre-

dictions with the GP classifier is a well-established technique.

In our implementation, we employed a probit model and the

(now-standard) Expectation-Propagation (EP) approach [9] to

combat the well-known intractable integral that arises. Due

to space constraints, we omit the details of GP classification

here, instead directing the interested reader to [5]. With the

GP classifier learned, the probability that any new unlabeled

(test) data point belongs to each class can be computed easily.

4. CLASSIFICATION

Central to our proposed classification algorithm is a novel co-

variance function that we employ to integrate the result of the

image deformation algorithm into the Bayesian classification

framework of the Gaussian process.

The deformation process between a pair of images pro-

vides a measure of similarity without first resorting to fea-

ture extraction. As a result, instead of employing the standard

Gaussian covariance function with (6), we define the function

g(xi,xj ; θ) in (5) as

g(xi,xj ; θ) = Δ(xi,xj) + Δ(xj ,xi) (7)

where an abuse of notation allows us to use xi to represent the

i-th image (rather than the vector of features extracted from

the i-th image). In (7), Δ(xi,xj) is the average distance by

which each pixel in the image must be displaced to deform

the i-th image into the j-th image. This deformation measure

is quantified by

Δ(xi,xj) =
1

NrNc

Nr∑
r=1

Nc∑
c=1

√
(ux(r, c))2 + (uy(r, c))2

(8)

where ux(r, c) and uy(r, c) are the final x-direction and y-

direction displacements from the deformation process at the

pixel location (r, c), respectively.

The definition of (7) is composed of two terms to ensure

that the covariance matrix K is symmetric (i.e., Kij = Kji)

and positive definite, as is required for the GP algorithm. The

task of learning a GP classifier is that of learning the hyper-

parameters θ. Defining g(xi,xj ; θ) as in (7) implies that no
classifier learning must be performed, as our formulation has

no parameters to be learned.

Assume we are given L labeled images (labeled as con-

taining either a target (i.e., mine) or clutter), and U unlabeled

images that we wish to classify. We proceed to classify the

unlabeled images in the following manner. First, each of the

L labeled images is deformed into each of the other labeled

and unlabeled images using the image deformation algorithm

discussed in Section 2. Next, each of the U unlabeled images

is deformed into each of the L labeled images. The result of

the deformation between a pair of images will be the deforma-

tion quantity defined in (8). Using (7) in (5), the GP classifier

can be readily computed. The output of the GP classifier gives

the probability that each unlabeled image belongs to each of

the two classes (targets and clutter).

5. EXPERIMENTS

To evaluate our proposed algorithm, we conduct experiments

on a data set of real, measured land mine data collected from

a radar sensor. The raw data is a large radar image of a scene,

from which (20 pixel by 20 pixel) image chips are extracted.

The objective is to properly classify each data point (i.e., im-

age chip) as a target or clutter. The data set contains 25 targets

and 85 clutter. We conduct 1000 independent trials, where

each trial uses a random partition of the data into labeled and

unlabeled data. In every trial, however, only two data points

(one data point from each class) are treated as labeled train-

ing data; the remaining 108 unlabeled data points are used as

testing data.

In addition to our proposed algorithm employing the im-

age deformation technique, we consider two alternative meth-

ods. All three methods employ a GP classifier. The proposed

approach and the first alternative method both use (7) in defin-

ing the covariance function; the difference between the two

methods is that the alternative method defines Δ(xi,xj) as
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Fig. 1. Experimental results.

the misfit between two chips without performing any defor-

mation:

Δ(xi,xj) =

√√√√ 1
NrNc

Nr∑
r=1

Nc∑
c=1

(xi(r, c)− xj(r, c))2. (9)

This alternative is considered to illustrate the necessity of de-

forming the images before computing a similarity measure.

In the second alternative method considered, each image

chip is characterized by three basic features. The features are

the mean pixel value of the chip, the variance of the pixel val-

ues of the chip, and the spatial variance of the pixel of the

chip (computing via a correlation with a “checkerboard tem-

plate”). This approach uses these features in conjunction with

(6), instead of (7); the hyperparameters θ in (6) are learned via

evidence maximization [5]. This alternative method is consid-

ered to illustrate the limitations of the feature-based approach

for the data set under study.

We present classification results in the form of receiver

operating characteristic (ROC) curves (based on the output

of the GP classifier) in Figure 1. As can be observed from

Figure 1, the proposed approach outperforms the alternative

approaches. The ROC curves show the average performance

(over the 1000 trials) on the testing data. To prevent clutter-

ing the figure, error bars for the curves are withheld. In lieu

of error bars, the area under the ROC curve (AUC) [4] is used

to perform paired t-tests, according to which the proposed

algorithm is statistically significantly better than the two al-

ternatives, at a confidence level of 95%.

6. CONCLUSION

We have integrated an image deformation algorithm with a

Gaussian process classifier for application to remote-sensing

tasks in which data is in the form of imagery. To combine

these disparate techniques, we introduced a novel kernel func-

tion for the Gaussian process that allowed us to incorporate

the result of the image deformation algorithm into a rigor-

ous Bayesian classification framework. The promise of the

proposed algorithm was demonstrated on a data set of real,

measured land mine data.

By combining the novel covariance function with the GP

framework, a non-parametric classifier — meaning a classi-

fier with no parameters or hyperparameters — can be con-

structed. This aspect of the algorithm suggests that the clas-

sifier may have the ability to generalize well to new environ-

ments with different characteristics because the classifier will

not have learned parameters specific to the training data or

site. In the future, more extensive experiments will investi-

gate this potential generalization ability of the approach.
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