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ABSTRACT
In this paper, we investigate Locality Preserving Projections

(LPP) in two-dimensional sense. Recently, LPP was proposed

for dimensionality reduction, which can detect the intrinsic

manifold structure of data and preserve the local information.

When image data are concerned, they are often vectorized for

LPP. However, the dimension of image data is usually very

high, LPP can’t be implemented due to singularity of matrix.

We propose two methods for image dimensionality reduction:

two-dimensional LPP (2DLPP) and bilateral two-dimensional

LPP (B2DLPP), which are based directly on 2D image matri-

ces rather than 1D vectors as LPP does. Experiments are con-

ducted on the ORL face database, which shows higher recog-

nition performance of the proposed methods.

Index Terms— Pattern recognition, image analysis, lo-

cality preserving projection, dimensionality reduction, two-

dimensional method

1. INTRODUCTION

In pattern recognition, when data have high dimension, such

as image data, recognition becomes very hard. Due to the

wide application of image recognition, many methods have

been developed for it over the past few decades. Appearance-

based methods are among those well-investigated. However,

they are often confronted with dimensionality reduction prob-

lems because the dimension of vector representation of an

(s × t) image is too high to allow fast and good recognition.

Two of the most classical dimensionality reduction methods

are Principal Component Analysis (PCA) [1] and Linear Dis-

criminant Analysis (LDA) [2]. And now two new techniques,

namely 2DPCA [3] and Laplacianfaces [4], have appeared in

recent literature.

PCA [1] aims to find a linear mapping which preserves

variance. However, PCA focuses on low-dimensional repre-

sentation of data and does not take use of label information in

training set for recognition. LDA [2] pursues a linear mapping

which preserves discriminant information. Therefore, LDA

contains the most discriminant information in the training set
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(rather than the test set). Given a sufficient training sample,

LDA is superior to PCA. While for a small sample size prob-

lem, PCA can outperform LDA because LDA is sensitive to

the training data set.

Compared with traditional PCA, 2DPCA [3] extracts im-

age features directly from 2D image matrices rather than 1D

vectors. Therefore, image matrices do not need to be trans-

formed into vectors. An image covariance matrix is con-

structed from original image matrices for feature extraction.

The optimal projection axes are its orthogonal eigenvectors

corresponding to its largest eigenvalues. Due to smaller size

of image variance matrix than original variance matrix, 2DPCA

requires less time to extract image features and achieves higher

recognition performance. Recently, Sanguansat et al.[5] per-

formed 2DLDA in 2DPCA feature space to reduce number of

coefficients needed and obtained higher recognition rate.

Laplacianfaces is based on a technique called Locality

Preserving Projections (LPP) [4], which finds an embedding

that preserves local information, and obtains a face subspace

that best detects the essential face manifold structure. He et

al. [4] constructed a similarity matrix of data points, then

minimized the sum of square difference of features weighted

by similarity. The optimal projection axes best preserve the

local structure of the underlying distribution in some sense.

From analysis they found that LPP is connected with PCA

and LDA. LPP can be seen as a generalization of LDA.

2DPCA and 2DLDA are simple in computational com-

plexity, which can only see the Euclidean structure of image

space. LPP can find an embedding that preserves local in-

formation. But if the training samples are insufficient and

data dimension is high especially for image data, LPP can’t

be used directly due to singularity of matrices. In this paper,

we investigate LPP in two-dimensional sense and in bilateral

two-dimensional sense based on image matrices directly. they

are referred as Two-Dimensional Locality Preserving Projec-

tions (2DLPP) and Bilateral Two-Dimensional Locality Pre-

serving Projections (B2DLPP) respectively hereafter. Their

recognition performances are evaluated.

The rest of this paper is arranged as the following: LPP

method is recalled in section 2; In section 3, 2DLPP is demon-

strated in detail; B2DLPP is deduced and described in section

4; Section 5 contains experiments on ORL face database to
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test the performance of the proposed methods comparing with

other methods; Conclusion is drawn in Section 6.

2. LOCALITY PRESERVING PROJECTIONS

He et al.[4] considered a low-dimensional manifold M which

is embedded in p-dimensional Euclidean space Rp. A set of

data {xi, i = 1, . . . , n} is extracted from the manifold. Now

a projection axis w is expected such that after projection yi =
w�xi, {yi} represent {xi} as much as possible. A proper

criterion of selecting this projection axis w is to minimize the

following objective function under some constraint:

arg min
w

∑

ij

(yi − yj)2sij , (1)

where matrix S is a similarity matrix with element sij being

similarity between the ith and the jth training data. Through

some mathematical deduction, we can see∑

i<j

sij(yi − yj)2 = w�XLX�w, (2)

where � is transpose of vector (matrix), X = [x1,x2, ...,xn]
is the training data matrix, L = D − S is Laplacian matrix

and D is a diagonal matrix whose entries dii are column (or

row) sums of S, dii =
∑

j sij . dii corresponds to the ith
training data point. The larger dii is, the more “important”

the ith training data point is, which determines that the more

“important” yi is after the projection. Therefore, to eliminate

arbitrary scalability and translation of the minimization prob-

lem, it is proper to impose a constraint:∑

i

diiy
2
i = 1 ⇒ w�XDX�w = 1. (3)

Now the minimization problem turns into:

arg min
w�XDX�w=1

w�XLX�w. (4)

The optimal projection axis w is given by the minimal eigen-

value solution to the generalized eigenvalue problem:

XLX�w = λXDX�w. (5)

Similarly, to pursue a projection matrix W, projecting xi into

subspace Rq by yi = W�xi, we can get W = [w1,w2,
. . . ,wq] through similar procedure described above, which

exactly consists of the q eigenvectors corresponding to the q
smallest generalized eigenvalues.

3. TWO-DIMENSIONAL LOCALITY PRESERVING
PROJECTIONS

Now let us consider a set of n sample images A1,A2, ...,An

taken from an (s × t)-dimensional image space. Due to the

high dimensionality, it is difficult to apply conventional algo-

rithms directly for recognition. Therefore, dimensionality re-

duction is especially of importance. We design a linear trans-

formation which maps the original (s × t)-dimensional im-

age space into an s-dimensional feature space. Let w be a

t-dimensional unitary column vector. The method proposed

here is projecting each image Ai, an (s × t) matrix, onto w
by the following transformation:

xi = Aiw, i = 1, 2, ..., n. (6)

Then we get an s-dimensional projected feature xi for each

image Ai. To achieve the highest recognition rate, it is im-

portant to select a good projection vector w.

A reasonable criterion for choosing this mapping is to

minimize the following objective function:

min
∑

i<j

sij‖xi − xj‖2. (7)

The weight sij incurs a heavy penalty when neighboring points

Ai and Aj are mapped far apart. Therefore, minimizing the

objective function is an attempt to ensure that, if Ai and Aj

are “close”, then xi and xj are close as well. By simple alge-

bra operation, we see that∑

i<j

sij‖xi − xj‖2 = w�P�(L ⊗ Is)Pw, (8)

where P = [A�
1 ,A�

2 , ...,A�
n ]� is an (sn × t) matrix gener-

ated by arranging all the image matrices in column. Operator

⊗ is the Kronecker product of matrices. Is is the identity ma-

trix of order s. Furthermore, to remove an arbitrary scaling

factor and translation in the embedding, we impose a con-

straint as the following:∑

i

diix�
i xi = 1 ⇒ w�P�(D ⊗ Is)Pw = 1. (9)

Now the minimization problem is reduced to be:

arg min
w�P�(D⊗Is)Pw=1

w�P�(L ⊗ Is)Pw. (10)

The transformation vector w that minimizes the objective func-

tion is given by the minimum eigenvector solution to the gen-

eralized eigenvalue problem:

P�(L ⊗ Is)Pw = λP�(D ⊗ Is)Pw. (11)

Note that the matrices P�(L ⊗ Is)P and P�(D ⊗ Is)P are

both symmetric and positive semidefinite. And the vectors wi

that minimize the objective function are the minimum eigen-

vector solutions to the generalized eigenvalue problem.

4. BILATERAL TWO-DIMENSIONAL LOCALITY
PRESERVING PROJECTIONS

In image recognition, LPP needs vectorizing all the images,

which results in singularity of matrix. 2DLPP operates di-

rectly on image matrices. In fact, it performs compression

only in row direction. Similarly, we can operate alternative

2DLPP which operates in column direction of image matri-

ces. In this section, we introduce bilateral two-dimensional

locality preserving projections (B2DLPP) which performs di-

mensionality reduction both in row and in column direction

of image matrices.

Let there be n training images Ai (i = 1, ..., n) all sharing

(s × t) size. We wish to perform the following projection:

Xi = U�AiV, i = 1, 2, ..., n. (12)

where U ∈ Rs×l (l < s) and V ∈ Rt×r (r < t) are left-

and right-projection matrix. We get (l × r) feature matrices

Xi (i = 1, ..., n). Let S be the (n×n) neighborhood similar-

ity matrix of original images Ai (i = 1, ..., n). We wish that
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the projection preserves neighborhood relationship, i.e., each

two neighboring points in original image space should be in

neighborhood after the projection. A proper optimal criterion

can be set as minimizing the following objective function un-

der some constraint:

min
U,V

F (U,V) = min
U,V

∑

i<j

‖Xi − Xj‖2
F sij . (13)

where ‖ � ‖2
F is square of Frobenius norm, i.e., sum of square

of all elements of a matrix. The weight sij incurs a heavy

penalty when neighboring points Ai and Aj are mapped far

apart. Therefore, minimizing the objective function is an at-

tempt to ensure that, if Ai and Aj are “close”, then Xi and

Xj are close as well. By simple algebra operation, we can see

F (U,V) = tr[U�Q(L ⊗ VV�)Q�U]
= tr[V�P�(L ⊗ UU�)PV]. (14)

where dii, the diagonal element of D, satisfy dii =
∑

j sij .

L = D − S. Q = [A1,A2, ...,An] is an (s × tn) matrix

generated by concatenating all the image matrices in row di-

rection, and P = [A�
1 ,A�

2 , ...,A�
n ]� is an (sn × t) matrix

generated by concatenating all the image matrices in column

direction. Operator ⊗ is the Kronecker product of matrices.

tr[�] is trace of square matrix.

Matrix D provides a natural measure for original data

points. The larger dii (corresponding to the ith image Ai) is,

the more important Xi is after the projection. Therefore, to

eliminate the arbitrary scalability and translation, it’s proper

to impose a constraint on the optimization problem:

G(U,V) =
∑

i

dii‖Xi‖2
F = 1 (15)

⇒ tr[U�Q(D ⊗ VV�)Q�U] = 1 (16)

⇒ tr[V�P�(D ⊗ UU�)PV] = 1. (17)

Now the optimization criterion turns into solving the follow-

ing minimization problem:

arg min
U,V

tr[V�P�(L ⊗ UU�)PV]
tr[V�P�(D ⊗ UU�)PV]

(18)

or

arg min
U,V

tr[U�Q(L ⊗ VV�)Q�U]
tr[U�Q(D ⊗ VV�)Q�U]

. (19)

Then each column of projection matrices V = [v1,v2, ...,vr]
and U = [u1,u2, ...,ul] are the eigenvectors corresponding

to the r and l smallest eigenvalues of the following general-

ized eigenvalue problems:

P�(L ⊗ UU�)Pv = λP�(D ⊗ UU�)Pv (20)

Q(L ⊗ VV�)Q�u = γQ(D ⊗ VV�)Q�u. (21)

The above two equations depend on each other. U and V
can’t be solved separately. We adopt an iterative procedure

to solve them. First let U0 = Is, which is identity matrix,

substitute it in equation (20), solve the eigenvectors corre-

sponding to the r smallest eigenvalues and construct V1, then

substitute V1 in equation (21), solve the eigenvectors corre-

sponding to the l smallest eigenvalues and construct U1. Per-

form the two steps iteratively till convergence. The proof of

the convergence property can be easily done and is omitted

here due to the space limited. Experiments show this proce-

dure converges in three iterations.

Now the entire procedure of B2DLPP algorithm is sum-

marized as follows:
1. Constructing nearest-neighbor graph: Let G denote

a graph with n nodes, ith node corresponding to data

point Ai. We put an edge between nodes i and j if

Ai and Aj are “close”. There are several methods to

measure “close”. Here are two:

(a) k-nearest neighbors. Nodes i and j are connected

by an edge if i is among k nearest neighbors of j or j
is among k nearest neighbors of i.
(b) ε-neighborhoods. Nodes i and j are connected if

‖Ai − Aj‖F < ε.

Note: Here we can add label information of training

samples (if there is) to improve discriminant perfor-

mance, which can be done by restricting k-nearest neigh-

bors of each data point to be from the same class.
2. Choosing the weights: If there is an edge between

nodes i and j, put a similarity weight sij on it, oth-

erwise zero, and we get a sparse symmetric (n × n)
similarity matrix S. The similarity weight sij can be:

(a) Simple-minded. sij = 1 if and only if nodes i and

j are linked by an edge.

(b) Heat kernel. If nodes i and j are linked, put sij =
exp{−‖Ai−Aj‖2

F

c }, where c is a suitable constant.
3. Computing left- and right-projection matrices iter-

atively: Let U0 = Is, solve equations (20) and (21) it-

eratively till convergence, the eigenvectors correspond-

ing to the r and l smallest eigenvalues construct left-

and right-projection matrices U and V.

Once left- and right-projection matrices U and V are ob-

tained, we can get the feature matrices of all training images

in low dimensional space. When there is a new image A for

recognition, firstly get its feature matrix: X = U�AV, then

a nearest neighbor classifier can be adopted for recognition

using Frobenius norm as distance between feature matrices.

5. EXPERIMENTAL RESULTS

The proposed B2DLPP and other methods were tested and

compared for recognition on the ORL (AT&T) face database

(http://www.uk.research.att.com/facedatabase.html). Details

about the database can be found on the website. To simplify

the computation of the experiments and to improve the recog-

nition performance, we cropped each image manually to let

the eyes be at the same positions for each image and resized

to (64 × 64) pixels.

Firstly, we examined the variation of F value along itera-

tions. It changed very little after two iterations. In fact, more
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Table 1. Top recognition accuracy (%) comparisons between B2DLPP and other methods on ORL

# training images/person 2 3 4 5 6

Eigenfaces 73.1 (72) 76.4 (80) 85.8 (110) 88.0 (70) 88.8 (100)

Laplacianfaces 58.8 (70) 57.5 (90) 69.2 (120) 70.5 (100) 75.6 (110)

2DLPP + PCA 80.3 (50) 81.1 (60) 90.0 (80) 92.0 (60) 93.8 (100)

2DPCA 75.0 (64x10) 79.0 (64x10) 88.0 (64x8) 90.0 (64x4) 91.0 (64x14)

2DLDA 76.3 (64x7) 85.4 (64x5) 91.3 (64x5) 93.5 (64x5) 94.4 (64x5)

2DLPP 81.9 (64x4) 85.0 (64x5) 92.5 (64x5) 93.0 (64x3) 93.8 (64x4)

B2DLPP 72.2 (10x10) 84.3 (9x9) 93.8 (9x9) 95.5 (11x11) 95.6 (12x12)
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Fig. 1. Recognition comparison of B2DLPP on ORL

analysis in the iteration, we can see that V1 is exactly the pro-

jection matrix of 2DLPP. The following iteration let F smaller

than that of 2DLPP, i.e., B2DLPP can obtain smaller objective

function value than 2DLPP with fewer coefficients. In the fol-

lowing experiments, we just let the iteration run twice. And

for simplicity, we chose the same number of eigenvectors in

the two eigenvalue problems in B2DLPP, i.e., r = l.

Now we take five images per person for training. We test

the recognition performance of B2DLPP with Laplacianfaces

(PCA+LPP) and 2DLPP+PCA, which is doing a further PCA

step on concatenated features obtained by 2DLPP. The rest

of images are used for testing. In this part of experiment,

we choose l = 2, 3, ..., 12. Then the dimensions of features

are square of them. Fig.1 shows our results. B2DLPP and

2DLPP+PCA are generally the same although B2DLPP show

a little superiority. Both of them are better than Laplacian-

faces. Due to lack of training data, the performance of Lapla-

cianfaces is bad (even worse than PCA, to see the following

experiment).

Then we compare B2DLPP with more algorithms related.

We take a look at the coefficients needed by each algorithm

when obtaining top recognition accuracy. We choose k (k =
2, ..., 6) images per person for training. The rest images con-

struct test set. All algorithms are trained, and nearest neighbor

classifier is adopted for recognition. Compute recognition ac-

curacy under different feature dimension, and write down the

top recognition accuracy and the corresponding dimension.

Table 1 lists the top recognition accuracy and the correspond-

ing dimension of B2DLPP and other methods using different

number of training images per person. From the table, we can

see two-dimensional methods (2DPCA, 2DLDA and 2DLPP)

outperform one-dimensional methods (Eigenfaces and Lapla-

cianfaces), but two-dimensional methods need too more coef-

ficients for feature representation. 2DLPP+PCA is worse than

2DLPP though it needs fewer coefficients. B2DLPP obtains

higher recognition accuracy than two-dimensional methods

while needs only the number of coefficients as that of one-

dimensional methods. B2DLPP outperforms 2DLPP+PCA

when number of training images per person is enough (only

more than two). It should be noticed that 2DLDA+2DPCA

only obtained 93.5% accuracy when five images per person

were used in [5].

6. CONCLUSION

Based directly on image matrices, we proposed two new meth-

ods for dimensionality reduction: two-dimensional locality

preserving projections (2DLPP) and bilateral two-dimensional

locality preserving projections (B2DLPP). 2DLPP performs

matrix compression in row direction while B2DLPP performs

compression both in row and in column direction. Experi-

ments on the ORL face database showed that B2DLPP out-

performs other methods and requires fewer coefficients.
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