
FACE DETECTION USING LOCAL SMQT FEATURES AND SPLIT UP SNOW CLASSIFIER

Mikael Nilsson, Jörgen Nordberg, and Ingvar Claesson

Blekinge Institute of Technology
School of Engineering

Box 520, SE-372 25 Ronneby, Sweden
E-mail: mkn@bth.se, jno@bth.se, icl@bth.se

ABSTRACT

The purpose of this paper is threefold: firstly, the local Successive
Mean Quantization Transform features are proposed for illumination
and sensor insensitive operation in object recognition. Secondly, a
split up Sparse Network of Winnows is presented to speed up the
original classifier. Finally, the features and classifier are combined
for the task of frontal face detection. Detection results are presented
for the MIT+CMU and the BioID databases. With regard to this
face detector, the Receiver Operation Characteristics curve for the
BioID database yields the best published result. The result for the
CMU+MIT database is comparable to state-of-the-art face detectors.
A Matlab version of the face detection algorithm can be downloaded
from http://www.mathworks.com/matlabcentral/fileexchange/
loadFile.do?objectId=13701&objectType=FILE.

Index Terms— Object detection, Pattern recognition, Lighting,
Image processing

1. INTRODUCTION

Illumination and sensor variation are major concerns in visual object
detection. It is desirable to transform the raw illumination and sensor
varying image so the information only contains the structures of the
object. Some techniques previously proposed to reduce this variation
are Histogram Equalization (HE), variants of Local Binary Patterns
(LBP) [1] and the Modified Census Transform (MCT) [2]. HE is
a computationally expensive operation in comparison to LBP and
MCT, however LBP and MCT are typically restricted to extract only
binary patterns in a local area. The Successive Mean Quantization
Transform (SMQT) [3] can be viewed as a tunable tradeoff between
the number of quantization levels in the result and the computational
load. In this paper the SMQT is used to extract features from the
local area of an image. Derivations of the sensor and illumination
insensitive properties of the local SMQT features are presented.

Pattern recognition in the context of appearance based face de-
tection can been approached in several ways [4, 5]. Techniques pro-
posed for this task are for example the Neural Network (NN) [6],
probabilistic modelling [7], cascade of boosted features (AdaBoost)
[8], Sparse Network of Winnows (SNoW) [9], combination of Ad-
aBoost and SNoW [2] and the Support Vector Machine (SVM) [10].
This paper proposes an extension to the SNoW classifier, the split up
SNoW, for this classification task. The split up SNoW will utilize the
result from the original SNoW classifier and create a cascade of clas-
sifiers to perform a more rapid detection. It will be shown that the
number of splits and the number of weak classifiers can be arbitrary
within the limits of the full classifier. Further, a stronger classifier
will utilize all information gained from all weaker classifiers.

Face detection is a required first step in face recognition systems.
It also has several applications in areas such as video coding, video
conference, crowd surveillance and human-computer interfaces [5].
Here, a framework for face detection is proposed using the illumi-
nation insensitive features gained from the local SMQT features and
the rapid detection achieved by the split up SNoW classifier. A de-
scription of the scanning process and the database collection is pre-
sented. The resulting face detection algorithm is also evaluated on
two known databases, the CMU+MIT database [6] and the BioiD
database [11].

2. LOCAL SMQT FEATURES

The SMQT uses an approach that performs an automatic structural
breakdown of information. Our previous work with the SMQT can
be found in [3]. These properties will be employed on local areas in
an image to extract illumination insensitive features. Local areas can
be defined in several ways. For example, a straight forward method
is to divide the image into blocks of a predefined size. Another way
could be to extract values by interpolate points on a circle with a
radius from a fixed point [1]. Nevertheless, once the local area is
defined it will be a set of pixel values. Let x be one pixel andD(x) be
a set of |D(x)| = D pixels from a local area in an image. Consider
the SMQT transformation of the local area

SMQTL : D(x) →M(x) (1)

which yields a new set of values. The resulting values are insensitive
to gain and bias [3]. These properties are desirable with regard to the
formation of the whole intensity image I(x) which is a product of the
reflectance R(x) and the illuminance E(x) [12]. Additionally, the
influence of the camera can be modelled as a gain factor g and a bias
term b [2]. Thus, a model of the image can be described by

I(x) = gE(x)R(x) + b. (2)

In order to design a robust classifier for object detection the re-
flectance should be extracted since it contains the object structure.
In general, the separation of the reflectance and the illuminance is
an ill posed problem. A common approach to solving this problem
involves assuming that E(x) is spatially smooth. Further, if the il-
luminance can be considered to be constant in the chosen local area
then E(x) is given by

E(x) = E, ∀x ∈ D. (3)

Given the validity of Eq. 3, the SMQT on the local area will yield
illumination and camera-insensitive features. This implies that all
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Fig. 1. Example 4× 4 local area patterns and SMQT results.

local patterns which contain the same structure will yield the same
SMQT features for a specified level L, see Fig. 1.

The number of possible patterns using local SMQT features will
be

`
2L

´D
. For example the 4×4 pattern at L = 1 in Fig. 1 has

`
21

´4×4
= 65536 possible patterns.

3. SPLIT UP SNOW CLASSIFIER

The SNoW learning architecture is a sparse network of linear units
over a feature space [9]. One of the strong properties of SNoW is
the possibility to create lookup-tables for classification. Consider a
patchW of the SMQT featuresM(x), then a classifier

θ =
X

x∈W
hnonface

x (M(x))−
X

x∈W
hface

x (M(x)) (4)

can be achieved using the nonface table hnonface
x , the face table hface

x

and defining a threshold for θ. Since both tables work on the same
domain, this implies that one single lookup-table

hx = hnonface
x − hface

x (5)

can be created for single lookup-table classification.
Let the training database contain i = 1, 2, . . . , N feature patches

with the SMQT features Mi(x) and the corresponding classes ci

(face or nonface). The nonface table and the face table can then
be trained with the Winnow Update Rule [9]. Initially both tables
contain zeros. If an index in the table is addressed for the first
time during training, the value (weight) on that index is set to one.
There are three training parameters; the threshold γ, the promotion
parameter α > 1 and the demotion parameter 0 < β < 1. IfP

x∈W hface
x (Mi(x)) ≤ γ and ci is a face then promotion is con-

ducted as follows

hface
x (Mi(x)) = αhface

x (Mi(x)) , ∀x ∈ W. (6)

If ci is a nonface and
P

x∈W hface
x (Mi(x)) > γ then demotion

takes place

hface
x (Mi(x)) = βhface

x (Mi(x)) , ∀x ∈ W. (7)

This procedure is repeated until no changes occur. Training of the
nonface table is performed in the same manner, and finally the single
table is created according to Eq. (5).

One way to speed up the classification in object recognition is to
create a cascade of classifiers [8]. Here the full SNoW classifier will
be split up in sub classifiers to achieve this goal. Note that there will
be no additional training of sub classifiers, instead the full classifier
will be divided. Consider all possible feature combinations for one
feature, Pi, i = 1, 2, . . . , (2L)D , then

vx =

(2L)D
X

i=1

|hx(Pi)|, ∀x ∈ W (8)

results in a relevance value with respective significance to all features
in the feature patch. Sorting all the feature relevance values in the
patch will result in an importance list. Let W ′ ⊆ W be a subset
chosen to contain the features with the largest relevance values. Then

θ′ =
X

x∈W′
hx (M(x)) (9)

can function as a weak classifier, rejecting no faces within the train-
ing database, but at the cost of an increased number of false detec-
tions. The desired threshold used on θ′ is found from the face in the
training database that results in the lowest classification value from
Eq. (9).

Extending the number of sub classifiers can be achieved by se-
lecting more subsets and performing the same operations as described
for one sub classifier. Consider any division, according to the rele-
vance values, of the full set W ′ ⊆ W ′′ ⊆ . . . ⊆ W . Then W ′

has fewer features and more false detections compared to W ′′ and
so forth in the same manner until the full classifier is reached. One
of the advantages of this division is that W ′′ will use the sum result
from W ′. Hence, the maximum of summations and lookups in the
table will be the number of features in the patchW .

4. FACE DETECTION TRAINING AND CLASSIFICATION

In order to scan an image for faces, a patch of 32×32 pixels is ap-
plied. This patch is extracted and classified by jumping Δx = 1 and
Δy = 1 pixels through the whole image. In order to find faces of
various sizes, the image is repeatedly downscaled and resized with a
scale factor Sc = 1.2.

To overcome the illumination and sensor problem, the proposed
local SMQT features are extracted. Each pixel will get one feature
vector by analyzing its vicinity. This feature vector can further be
recalculated to an index

m =
DX

i=1

V(xi)
“
2L

”i−1

(10)

where V(xi) is a value from the feature vector at position i. This
feature index can be calculated for all pixels which results in the
feature indices image.
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A circular mask containing P = 648 pixels is applied to each
patch to remove background pixels, avoid edge effects from possi-
ble filtering and to avoid undefined pixels at rotation operation, see
Fig. 2.

Pixels

Feature indices

Mask

Pixels masked

Feature indices masked

Fig. 2. Masking of pixel image and feature indices image. The fea-
tures are here found by using a 3× 3 local area and L = 1.

With the SNoW and the split up SNoW classifier, the lookup
table is the major memory-intense issue. Consider the use of Nbit =
32 bit floating numbers in the table, then the classifier size (in bits)
will be

Shx = Nbit · P · (2L)D. (11)

Varying the size of the local area D and the level of the transform L
directly affects the memory usage for the SNoW table classifier, see
Tab. 1.

D ↓ L → 1 2 3

2× 2 40.5 KB 648 KB -
3× 3 1.26 MB 648 MB 324 GB
4× 4 162 MB 10.1 TB 648 PB
5× 5 81 GB - -

Table 1. Size of the classifier table with different local area sizes and
different levels of the SMQT. P = 648 and Nbit = 32, see Eq. (11).

The choice of the local area and the level of the SMQT are of
vital import to successful practical operation. For the split up SNoW
classifier, with fast lookup table operation, one of the properties to
consider is memory. Another is the local area required to make
Eq. (3) valid. Finally, the level of the transform is important in order
to control the information gained from each feature. In this paper,
the 3 × 3 local area and level L = 1 are used and found to be a
proper balance for the classifier. Some tests with 3 × 3 and L = 2
were also conducted. Although these tests showed promising results,
the amount of memory required made them impractical, see Tab. 1.

The face and nonface tables are trained with the parameters α =
1.005, β = 0.995 and γ = 200. The two trained tables are then
combined into one table according to Eq. 5. Given the SNoW clas-
sifier table, the proposed split up SNoW classifier is created. The
splits are here performed on 20, 50, 100, 200 and 648 summations.

This setting will remove over 90% of the background patches in the
initial stages from video frames recorded in an office environment.

Overlapped detections are pruned using geometrical location and
classification scores. Each detection is tested against all other de-
tections. If one of the area overlap ratios is over a fixed threshold,
then the different detections are considered to belong to the same
face. Given that two detections overlap each other, the detection with
the highest classification score is kept and the other one is removed.
This procedure is repeated until no more overlapping detections are
found.

4.1. Face Database

Images are collected using a webcamera containing a face, and are
hand-labelled with three points; the right eye, the left eye and the
center point on outer edge of upper lip (mouth indication). Using
these three points the face will be warped to the 32× 32 patch using
different destination points for variation, see Fig. 3. Currently, a
grand total of approximatively one million face patches are used for
training.

Fig. 3. Left - face image marked with three landmarks. Right -
examples of how the three landmarks are used to warp the face to
the 32× 32 patches with different destination points for variation.

4.2. Nonface Database

Initially the nonface database contains randomly generated patches.
A classifier is then trained using this nonface database and the face
database. A collection of videos are prepared from clips of movies
containing no faces and are used to bootstrap the database by ana-
lyzing all frames in the videos. Every false positive detection in any
frame will be added to the nonface database. The nonface database
is expanded using this bootstrap methodology. In final training, a
total of approximatively one million nonface patches are used after
bootstrapping.

5. RESULTS

The proposed face detector is evaluated on the CMU+MIT database
[6] which contains 130 images with 507 frontal faces and the BioID
database [11] which has 1521 images showing 1522 upright faces.
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For the scanning procedure used here, the CMU+MIT database has
77138600 patches to analyze and the BioID database 389252799
patches. Both these databases are commonly used for upright face
detection within the face detection community. The performance
is presented with a Receiver Operation Characteristic (ROC) curve
[13] for each database, see Fig. 4. With regard to the scanning used
here, the False Positive Rate (FPR) is 1.93 ∗ 10−7 and the True Pos-
itive Rate (TPR) is 0.95 if the operation on both databases is consid-
ered (77138600+389252799 patches analyzed).

The proposed local SMQT features and the split up SNoW clas-
sifier achieves the best presented BioID ROC curve and compara-
ble results with other works on the CMU+MIT database. An exten-
sive comparison to other works on these databases can be found in
[2, 4, 5, 11].
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Fig. 4. Detection results on MIT+CMU (130 images, 507 faces
to detect and 77138600 patches to analyze) and the BioID (1521
images, 1522 faces to detect and 389252799 patches to analyze)
databases.

Note that the masking performed on each patch restricts detec-
tion of faces located on the edge of images, since important infor-
mation, such as the eyes, can be masked away in those particular
positions. This is typically the case with only few of the images
found in the BioID database, hence to achieve a detection rate of
one requires a large amount of false detections for those particular
faces. The patches of size 32 × 32 also restrict detection of smaller
faces unless upscaling is performed. The upscaling could be utilized
on the CMU+MIT database, since it contains some faces that are of
smaller size, however it is not considered here for the purpose of fair
comparison with other works. Some of the faces were missed in the
databases - a result which may have ensued due to scanning issues
such as masking or patch size.

6. CONCLUSIONS

This paper has presented local SMQT features which can be used as
feature extraction for object detection. Properties for these features
were presented. The features were found to be able to cope with
illumination and sensor variation in object detection.

Further, the split up SNoW was introduced to speed up the stan-
dard SNoW classifier. The split up SNoW classifier requires only
training of one classifier network which can be arbitrarily divided

into several weaker classifiers in cascade. Each weak classifier uses
the result from previous weaker classifiers which makes it computa-
tionally efficient.

A face detection system using the local SMQT features and the
split up SNoW classifier was proposed. The face detector achieves
the best published ROC curve for the BioID database, and a ROC
curve comparable with state-of-the-art published face detectors for
the CMU+MIT database.
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