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ABSTRACT
In this paper, a novel class of Support Vector Machines (SVM)

is introduced to deal with facial expression recognition. The

proposed classifier incorporates statistic information about the

classes under examination into the classical SVM. The devel-

oped system performs facial expression recognition in facial

videos. The grid tracking and deformation algorithm used

tracks the Candide grid over time as the facial expression

evolves, until the frame that corresponds to the greatest fa-

cial expression intensity. The geometrical displacement of

Candide nodes is used as an input to the bank of novel SVM

classifiers, that are utilized to recognize the six basic facial

expressions. The experiments on the Cohn-Kanade database

show a recognition accuracy of 98.2%.

Index Terms— Facial Expression Recognition, Facial Ac-

tion Coding System, Support Vector Machines, Candide Grid.

1. INTRODUCTION

Facial expression recognition has attracted a great interest

during the past two decades, due to its importance for hu-

man centered interfaces. A set of six basic facial expres-

sions (anger, disgust, fear, happiness, sadness and surprise)

were defined [1]. A set of muscle movements, known as

Facial Action Units (FAUs), that produce each facial ex-

pression when combined following specific rules [2], was cre-

ated by psychologists, thus forming the so called Facial
Action Coding System (FACS) [3]. A survey on au-

tomatic facial expression recognition can be found in [4].

In this paper, a method for recognizing facial expressions

in videos using geometrical information and a novel class of

SVM, is proposed. The geometrical displacements of the

Candide facial model grid points (being tracked on the face

through time), defined as the difference of each point’s coor-

dinates between the first and the last frame of the video, are

used as an input to a novel multi-class SVM system that in-

corporates statistic information about the classes under exam-

This work was supported by the ”SIMILAR” European Network of Ex-

cellence on Multimodal Interfaces of the IST Programme of the European

Union (www.similar.cc).

ination. Essentially the paper improves the system proposed

in [5] by utilizing the novel multi-class SVM system. The ac-

quired experimental results justify the improved performance

of the system.

2. GEOMETRICAL DISPLACEMENT
INFORMATION EXTRACTION

The geometrical information extraction is performed by a grid

adaptation system, based on deformable models [5]. The Can-

dide grid is semi-automatically adjusted to the face on the first

video frame and then tracked through the video, following

the facial expression evolving through time. At the end, the

grid tracking algorithm produces the deformed Candide grid

that corresponds to the facial expression appearing at the last

frame of the video, i.e. the one with the greatest intensity.

The diagram of the system is shown in Figure 1.
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Fig. 1. System architecture for facial expression recognition

in facial videos.

The geometrical information used are the displacements

di
j of the Candide grid points, defined as the difference be-

tween the last and the first frame’s coordinates of the point:

di
j = [Δxi

j Δyi
j ]

T , i ∈ {1, . . . ,K} and j ∈ {1, . . . , N}
(1)

where i is the point index (K = 104 Candide grid points were

used in our case) and j is the index of the video examined.
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In that way, for every video, a feature vector gj is con-

structed:

gj = [d1
j d2

j . . . dK
j ]T . (2)

where the vector gj has F = 104·2 = 208 dimensions. While

training the SVM system, a set of feature vectors gj ∈ �F is

used as an input, labelled properly with the true correspond-

ing facial expression. To perform testing, an unlabelled fea-

ture vector gp is used as an input. The trained SVM system

provides a label that classifies gp to one of the six basic facial

expressions.

In this paper, a new multi-class SVM approach is used for

this purpose. Before proceeding to the description of this new

SVM variant, a brief outline of the standard two-class and

multi-class SVM will be provided.

3. GEOMETRICAL DISPLACEMENT
INFORMATION CLASSIFICATION USING

CLASSICAL SVM SYSTEMS

3.1. Two-class SVM systems

A two-class SVM classifier finds a hyperplane or surface that

separates the two-classes F1 and F2 with the maximum mar-

gin [6]. In order to train a two-class SVM network using soft

margin formulation, the following minimization problem has

to be solved [6]:

min
w,b,ξ

1
2

wT w + C

N∑
j=1

ξj (3)

subject to the separability constraints:

yi(wT φ(xj) + b) ≥ 1− ξj , ξj ≥ 0, j = 1, . . . , N (4)

where w is the vector of hyperplane coefficients, b is the bias,

ξ = [ξi, . . . , ξw] is the slack variable vector, C is the term

that penalizes the training errors and yi is the class label of

the vector xi that takes values in {−1, 1}.
After solving the optimization problem (3) subject to the

separability constraints (4), the decision function that can be

used to classify unlabelled samples is:

f(g) = sign(wT φ(g) + b). (5)

In this formulation, a non-linear mapping φ is used. On the

other hand, if a linear SVM system is to be constructed then

φ(g) = g. The non-linear mapping is defined by a positive

kernel function, h(gi, gj), specifying an inner product in the

feature space and satisfying the Mercer condition [6]:

h(gi, gj) = φ(gi)
T
φ(gj). (6)

Typical kernels include the polynomial and Radial Basis Func-

tions (RBF) kernels:

h(x,y) = φ(x)T φ(y) = (xT y + 1)d (7)

h(x,y) = φ(x)T φ(y) = e−γ(x−y)T (x−y)

where d is the degree of the polynomial kernel and γ is the

spread of the Gaussian cluster. These kernels have been used

in the experiments conducted in this paper.

3.2. Multi-class SVM

The multi-class SVM is a generalization of two-class SVM

systems in order to deal with multi-class problems. In facial

expression recognition this multi-class SVM constructs 6 fa-

cial expressions rules, where the k−th function wT
k φ(gj)+bk

separates training vectors of the facial expression class k from

the rest of the vectors, by minimizing the objective function:

min
w,b,ξ

1
2

6∑
k=1

wT
k wk + C

N∑
j=1

∑
k �=lj

ξk
j (8)

subject to the constraints:

wT
lj φ(gj) + blj ≥ wT

k φ(gj) + bk + 2− ξk
j (9)

ξk
j ≥ 0, j = 1, . . . , N, k ∈ {1, . . . , 6}\lj

where lj is the label of the geometrical displacement vector gj

which takes values in {1, . . . , 6}. Then, the decision function

is:

h(g) = argmax
k=1,...,6

(wT
k φ(g) + bk). (10)

4. GEOMETRICAL DISPLACEMENT
INFORMATION CLASSIFICATION USING THE

PROPOSED SVM SYSTEMS

In this section, a novel multi-class classifier will be presented.

In order to smoothly introduce the proposed variant which is

an extension of the two-class SVM proposed in [7] to multiple

classes, the method in [7] will be firstly described.

4.1. The two-class SVM incorporating class information

The two-class classifiers in [7] have been inspired by the op-

timization of the Fisher’s discriminant ratio. That is, mo-

tivated by the fact that the Fisher’s discriminant optimiza-

tion problem for two-classes is a constrained least-squares

optimization problem, the problem of minimizing the within-

class variance has been reformulated in [7], so that it can be

solved by constructing the optimal separating hyperplane for

both separable and nonseparable cases. More details about

the motivations of this modified SVM can be found in [7].

4.1.1. The Linear Case

In order to form the optimization problem of the modified

SVM proposed in [7], the within class scatter matrix of the

training set should be defined in the two-class case:

Sw =
∑

xi∈F1

(xi−μ1)(xi−μ1)
T +

∑
xi∈F2

(xi−μ2)(xi−μ2)
T

(11)
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where μ1 and μ2 are the mean vectors of the classes F1 and

F2, respectively. The optimization problem of the proposed

SVM is [7]:

min
w,b,ξ

wT Sww + C

N∑
j=1

ξj (12)

subject to the separability constraints (4). The solution of this

constrained optimization problem is given by the saddle point

of the Lagrangian:

L(w, b,α,β, ξ) = wT Sww + C

N∑
i=1

ξi −

−
N∑

i=1

αi[yi(wT xi − b)− 1 + ξi]−
N∑

i=1

βiξi (13)

where α = [α1, . . . , αN ] and β = [β1, . . . , βN ] are the vec-

tors of Lagrangian multipliers for the constraints (4). The

linear decision function is:

f(x) = sign(wT x + b) = sign(
1
2

N∑
j=1

yiαixT
j Sw

−1x + b).

(14)

4.1.2. The Non-Linear Case

By applying the non-linear function φ to the vectors Sw
− 1

2 xi,

it is derived that h(Sw
− 1

2 xi,Sw
− 1

2 xj) =
= φ(Sw

− 1
2 xi)T φ(Sw

− 1
2 xj) [7]. Then, kernel functions are

applied and the Wolf dual problem [7] can be written as:

W (α) =
N∑
i

αi− 1
4

N∑
i=1

N∑
j=1

αiαjyiyjh(Sw
− 1

2 xi,Sw
− 1

2 xj).

(15)

The corresponding non-linear decision function is given by:

f(x) = sign(
1
2

N∑
j=1

yiαih(Sw
− 1

2 xj ,Sw
− 1

2 x) + b). (16)

4.2. The proposed multi-class Classifier

As mentioned above, the proposed classifier is a generaliza-

tion of the classifier presented in Section 4.1 towards handling

multiple classes. The linear and non-linear cases of this clas-

sifier are described below.

4.2.1. The Linear Case

Let the within class scatter matrix of the grid deformation fea-

ture vectors gi be defined as:

Sw =
M∑

k=1

∑
gi∈Uk

(gi − μk)(gi − μk)T (17)

where M is the number of facial expression classes (here equal

to six), μk is the mean geometrical displacement vector for

the class k and Uk, k ∈ {1, . . . , 6} the k-th facial expression

class. The within class scatter matrix Sw is assumed to be in-

vertible, which holds for the case under examination since the

feature vector dimension is smaller than the available training

examples.

By extending (12) the proposed constrained optimization

problem is:

min
wk,b,ξ

6∑
k=1

wT
k Swwk + C

N∑
j=1

∑
k �=lj

ξk
j (18)

subject to the separability constraints in (9). The solution of

the above constrained optimization problem can be given by

finding the saddle point of the Lagrangian:

L(w,b, ξ,α,β) =
∑6

k=1 wT
k Swwk + +C

∑N
i=1

∑6
k=1 ξk

i −
−∑N

i=1

∑6
k=1 αk

i [(wli −wk)T gi + bli − bk − 2 + ξk
i ]

−∑N
i=1

∑6
k=1 βk

i ξk
i

(19)

where α = [α1
1, . . . , α

k
i , . . . , α6

N ] and β = [β1
1 , . . . , βk

i , . . . , β6
N ]

are the Lagrangian multipliers for the constraints (9) with :

αli
i = 0, ξli

i = 2, βli
i = 0, i = 1, . . . , N (20)

and constraints:

αk
i ≥ 0, βk

i ≥ 0, i = 1, . . . , l, k ∈ {1, . . . , 6}\li. (21)

The Lagrangian (19) has to be maximized with respect to α
and β and minimized with respect to w and ξ. In order to

produce a more compact equation form let us define the fol-

lowing variables:

Ai =
6∑

k=1

αk
i and ck

i =
{

1, if li = k
0, if li �= k.

(22)

After a series of algebraic manipulations, the search of the

saddle point of the Lagrangian (19) is reformulated to the

maximization of the Wolf dual problem:

W (α) = 2
∑N

i=1

∑6
k=1 αk

i + 1
4

∑
i,j,k(− 1

2c
lj
j AiAj+

+αk
i αli

i − 1
2αk

i αk
j )giS−1

w gj

(23)

which is a quadratic function in terms of α with the linear

constraints:

N∑
i=1

ak
i =

N∑
i=1

ck
i Ai, k = 1, . . . , 6. (24)

The corresponding decision hyperplane can be proven to be:

f(g) = argmaxk=1,...,6(wT
k g + bk) =

= argmaxk=1,...,6[
1
2

∑N
i=1(c

k
i Ai − αk

i )gT
i S−1

w g + bk].
(25)
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4.2.2. The Non-Linear Case

The non-linear multi-class decision surfaces can be created in

the same manner as the two-class non-linear decision surfaces

that have been proposed in [7] and described in Section 4.1.2.

The fact that the term gT
i S−1

w gj can be written in terms of dot

products as (S− 1
2

w gi)T (S− 1
2

w gj), is exploited. Then, kernels

can be applied in (23) as:

W (α) = 2
∑N

i=1

∑6
k=1 αk

i + 1
4

∑
i,j,k(− 1

2c
lj
j AiAj+

+αk
i αli

i − 1
2αk

i αk
j )h(S− 1

2
w gi,S

− 1
2

w gj).
(26)

The corresponding decision surface can be proven to be:

f(g) = argmax
k=1,...,6

1
2
[

N∑
i=1

(ck
i Ai − αn

i )h(S− 1
2

w gi,S
− 1

2
w g) + bk].

(27)

5. EXPERIMENTAL RESULTS

The Cohn-Kanade database [3] was used to perform exper-

iments regarding facial expression recognition in six basic

facial expressions classes. The combinations of FAUs this

database is annotated with, were translated into facial expres-

sions according to [2], in order to define the corresponding

ground truth for the facial expressions. All the subjects were

used so as to form a database of over 400 videos.
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Fig. 2. Accuracy rates obtained for facial expression recogni-

tion using multi-class SVM.

The following procedure was followed for the experiments.

All videos contained in the database were divided into 6 classes,

each one corresponding to one of the 6 basic facial expres-

sions to be recognized. A set containing 20% of the data for

each class, chosen randomly, was created and used as the test

set, while the remaining samples formed the training set. The

procedure was repeated five times, each time with a differ-

ent test set until all samples were used in the test set. The

performance metric that was used was the average classifica-

tion accuracy, i.e. the mean value of the percentages of the

correctly classified facial expressions.

When the classical six class SVM were applied to fea-

ture vectors derived from the Candide grid, the best facial ex-

pression recognition accuracy achieved was equal to 91.4%.

The best facial expression recognition accuracy when the pro-

posed six class SVM was used, was equal to 98.2% (with dif-

ferent values if gamma and different degrees of the polyno-

mial kernels). Figure 2 shows the accuracy rates achieved

when polynomial and RBF kernels were used in the classical

and proposed SVM.

6. CONCLUSION

Facial expression recognition in videos using SVM and ge-

ometrical information has been investigated in this paper. A

novel multi-class SVM classifier that incorporates statistic in-

formation about the classes under examination into the clas-

sical SVM, has been proposed. The experiments yielded an

accuracy rate equal to 98.2% which corresponds to a 6.4% in-

crease from the recognition accuracy obtained when classical

SVM were used.
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