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ABSTRACT 

In this work, a new family of nonlinear filters based on support 
vector machine is presented. This new filter, called support vector 
machine filter (SVMF), is based on the general concept of binary 
filters and machine learning theory. Two applications that show 
the potential of these filters are designed. As a first application, the 
proposed filter is used as an impulsive noise image denoising. The 
second application presents a new edge detection structure using a 
different point of view from the traditional ones. The results 
obtained for the applications at hand show that the proposed filter 
outperformes Center Weighted Median in the image denoising task 
and the traditional edge detectors. The proposed filter can be 
successfully applied for the processing of images corrupted with 
impulsive noise while maintaining the visual quality and a low 
reconstruction error. 

Index Terms— Nonlinear Filter, Support Vector Machine, 
Image Processing 

1. INTRODUCTION 

Nonlinear filters have showed a great performance in signal, image 
and video processing tasks when the underlying noise follows an 
heavy-tail distribution. In particular, Boolean filters are a class of 
nonlinear filters widely used that encompass stack filters, weighted 
median filters, among others [1], [2]. They are characterized by 
two basic properties: threshold decomposition and a binary 
operation (Boolean function) performed over the observation 
samples. The success of these filters is based on two intrinsic 
properties: edge preservation and efficient noise attenuation, being 
robust against impulsive noise [3]. 

On the other hand, recently a new technique, called Support 
Vector Machine (SVM), has emerged as a powerful tool to solve 
classification and regression problems based on the statistical 
learning theory. This technique, originally used as an optimal 
classifier [4], [5], has been extended to a great variety of 
application [6], [7]. SVM provides a simple way to obtain good 
classification results with reduced a priori knowledge of the 
problem, being the most used application, the use of SVM as 
binary classifier where the observation vector is categorized in one 
out of two possible classes. 

In this work, we take advantage of the classification 
capability of SVM in a binary filtering process, replacing the 
Boolean function that characterizes the Boolean filter by a Support 
Vector Machine, defines thus a new family of nonlinear filters. 

To the best of our knowledge, it has not been reported in 
literature the use of Boolean filters based on SVM in which the 
training is based on the details and edge structure that have to be 
preserved. The closest work related to our approach uses SVM to 
classifier whether the underlying sample (pixel) is contaminated or 
not and apply a filtering operation [7]. 

A new family of non-linear filters based on SVM is proposed 
in this paper. The potential of these filters is showed in two image 
applications, image denoising and edge detection. In the latter, a 
new structure to detect edges using a non-traditional approach 
based on the proposed filters is developed. Different from the 
traditional methods where the derivative is approximated or 
complex mathematical methods are used to detect edges, the main 
idea, in our approach, is to train the SVM in the binary domain 
created by a threshold operator, so that it can recognize the 
presence of edges in the image of interest. The results show that 
our approach is better than traditional edge detectors in particular 
when the images are corrupted by impulsive noise and yields 
competitive results on clear images. 

2. DEFINITIONS AND PRELIMINARIES 

2.1. Threshold decomposition 

Threshold decomposition is a powerful tool used for the analysis 
and implementation of Boolean filters including in this family 
median filters, weighted median filters, order static filters and 
stack filters [2], [8]. 

Consider an integer-valued sample set X1,X2,…,XN  forming a 
observation vector X = [X1,X2,…,XN], where Xi  Q and Q = 
{ M,…,–1,0,…,M}. Threshold decomposition of X generates 2M 
binary vector, x-M+1, x-M+2,… , x0,… , xM where the i-th element of 
xm for m = M+1, M+2,…,0,…,M is defined as: 
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where ( )mT  is the thresholding operator. Thus, for each threshold 
level m, the i-th component of the binary vector is 1 if Xi is greater 
than or equal to the threshold value, otherwise it is 1.   

Threshold decomposition has several important properties. 
First, the thresholding operator is a reversible operator. Each 
component of the original observation vector can be exactly 
reconstructed from the set of its corresponding binary values as 

1
1 2 M m

i im M
X x . A second important property of threshold 

decomposition is the partial ordering on the set of binary vectors of 
fixed length. That is, for all threshold level m  l, it can be shown 
that xm  xl, where the smaller than or equal to operator  holds 
for each component of the binary vector. 

2.2. Boolean Filters 

Let X(n) be the observation vector at n-th window position, a 
Boolean filter, denoted by fTBF nX , is defined as [1]:  
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where X(n) =[X1(n),…,XN(n)] , with Xi(n)=X(n - (N-1)/2 + i-1),  
f:{-1,1}N  {-1,1},  and Tm ( ) is the threshold operator defined in 
Eq. (1). Note that the filtering operations reduces to decomposing 
the observation vectors in its binary representation, filtering each 
binary vector using the binary filter f ( ), adding up all the binary 
outputs to form the filter output. This family of filters is 
completely specified in the binary domain through the truth table 
of f ( ) or its corresponding minimum sum of products. 

Boolean filters include stack filters as a special case [2], [8]. 
A stack filter is a particular type of Boolean filter defined by Eq. 
(2) where f ( ) is a positive Boolean function that satisfies the 
stacking constrain [2], [8]. 

2.3. Support Vector Machine (SVM) 

SVM principles were developed by Vapnik and presented in 
several works as in [5], [9]. Consider a binary classification 
problem, where a collection of vectors (X  RN) are available. 
Furthermore, consider that the set of vectors are related to two 
different classes, y1 and y2, and it is desired to find an optimal 
hyperplane to divide these classes. The optimal decision boundary 
will be the one that maximizes the distance from the hyperplane to 
the training data. In the two dimensional case, the hyperplane will 
be a line, while in a multidimensional space, the hyperplane will 
be so that, W X +b=0, where W  RN and b  R are obtained as 
the solution of the optimization problem [9]: 
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   The decision hyperplane can be written as: 

1
sgn l

i i ii
f y bX X X                  (4) 

where yi  {+1, –1} defines the class where Xi belongs. Thus, a set 
of training data is needed 1; l

i i iyX  in order to find the 

classification boundary. In Eq. (4), `s are Lagrange multiplicators 
obtained as part of the solution of the constrained optimization 
problem and l represents the number of training samples used to 
define the decision frontier vectors. The vectors Xi for i  0 are 
known as support vectors since the separation region are defined 
by those vectors [4]. 

When the training data are not linearly separable, this scheme 
can not be used directly. In order to solve this problem, SVM turns 
the entry observation vector into a characteristic space of a higher 
dimension, solving the optimal problem in such space, and 
returning to the original space converting the optimal hyperplane 
in a non-linear decision frontier [4]. The non-linear expression to 
the classification function is given by: 
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Where ,K  is a kernel function that performs the non-linear 
transformation on the observation vectors. 

In practice, an optimal separating hyperplane may not exist, 
in this case the optimization problem is solved by inserting non-
negative slack variables , reducing the optimization problem to: 
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where C  is a penalty term that makes more or less important the 
misclassification error in the minimization process and, therefore, 
it is a tunning parameter [4]. 

3. SUPPORT VECTOR MACHINE FILTERS (SVMF) 

For a boolean filter defined by Eq. (2), it is possible to replace the 
function f ( ) that characterizes the Boolean filter by a decision 
function corresponding to a SVM, defining thus a new family of 
non-linear filters. 

Let X = [X1,X2,…,XN] be the observation vector to be filtered, 
furthermore, let 1 2, ,...,m m m m

Nx x xx  be its correspondent 

threshold decomposition at threshold level m.  
The output of the Support Vector Machine filter, denoted by 

SVMF(X), is defined as: 
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where ( ) : 1, 1 1, 1N
fSVM , is a decision function 

corresponding to a SVM as in Eq. (4) and xm = Tm (X), is the 
threshold decomposition of input vector X .  

Substituting SVM f ( ) for the decision structure from Eq. (5), 
Eq. (7) reduces to: 
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At first look, it seems that the computational cost of Eq. (8) is 
expensive, this, however, can be notably reduced if it is noticed 
that for any 1,m X  or 1 , , 2,...,i im X X i N  or 

,Nm X , threshold decomposition outputs the same binary 

vectors. Therefore, there are at least N+1, different binary vectors 
xm. Thus, after some simplifications, Eq. (8) reduces to: 
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where X(i) is the i-th smallest sample of the set {X1, X2,...,XN}, with 
X(1)  X(2)  …   X(N). The filter representation in Eq. (9) provides 
us with an interesting interpretation of the SVM filter. The filter 
output is computed by the sum of the midrange of the signed 
samples (X(1)+X(N))/2 and a linear combination of the differences 
between successive order statistics (X(i) X(i-1)), multiplies by a 
factor ( 1/2) whose signed depends on the training samples. This 
is another way to see the proposed SVM filter and, as expected, 
output the same results as the one obtained by Eq. (8). 

4. SVM FILTER DESIGN BASED ON DETAIL 
STRUCTURE 

Several 3x3 masks were designed generalizing some particular 
cases that may appear in a filtering process. Thus, a 9-component 
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vector are formed and used to train the SVM that, in turns, defines 
the filtering characteristic function. 

Figure 1 depicts the designed masks. These masks were 
created trying to get a good prediction model, expecting the SVM 
to generalize to other possible cases that may appear during the 
filtering process. On the upper part of each mask is the assigned 
label that represents the desired output for that particular mask. For 
instance, the training vector for the first mask of Fig. 1, is 

; 1,1, 1,1,1, 1,1,1, 1;1yX . The assigned label to this 
particular mask is “+1” which indicates that the white zone is 
generalized. Thus a vertical line is preserved during the filtering 
operation. 

 
Figure 1. Example of SVM training mask. 

5. APPLICATIONS 

5.1. Impulsive noise removing using SVM filter 

As a first application, the proposed filter is used in an image 
denoising task, more precisely to mitigate the impulsive noise in 
images. SVM filters are trained using masks like the ones show in 
Fig. 1, for the linear kernel of the type, K (X, Y) = X Y  and a 
radial base function, K (X, Y) = exp (– X – Y /2 2). 

The performance of the proposed filter is compared to the 
performance obtained using Center Weighted Median (CWM) 
filters [3]. The best CWM filter with minimum Mean Square Error 
(MSE) and Mean Absolute Error (MAE) is chosen and used in the 
comparison. Thus the performance of the SVM filter is compared 
to the performance of the best CWM filter. 

Figure 2 shows the performance of the SVM filter with RBF 
kernel, for this case the parameter C changed from C = 10 2 to C = 
102 obtaining the best result for C = 1 and  = 10. Figure 2 also 
shows a zoom-in of the image part enclosed by a rectangle. As can 
be seen, the SVM based filter has a better performance, 
eliminating impulsive noise efficiently, while preserving details 
and features present on the original image. 

 
Figure 2. SVM filter performance. (a, e) original image (b, f) 
image with impulsive noise density of 10% (c, g) SVM filter 
output (d, h) CWM filter output. Bottom a zoom-in of the 
rectangular area. 

 

The proposed approach was tested using a bank of images, 
both natural and artificial. Table 1 presents selected results of the 
MSE and MAE for the filtering process for a noise density of 10%.  

It can be observed comparing the images and the errors values 
that the SVM filter shows a better performance compared to that 
yielded by the CWM filter. Table 1 reveals in a quantitative way 
what was presented in Fig. 2. The SVM filter not only removes 
impulsive noise effectively, but also keeps details well, acting as a 
competitive filter for the elimination of impulsive noise in images. 

Table 1.  Mean Square Error and Mean Absolute Error. 

 
MSE 
SVM 
Filter 

MSE 
CWM 
Filter 

MAE 
SVM 
Filter 

MAE 
CWM 
Filter 

Cameraman 
(linear kernel) 65.69 75.09 1.74 2.31 

Cameraman 
(RBF kernel) 60.65 75.09 1.61 2.31 

Circuit 
(RBF kernel) 48.49 49.13 1.25 1.27 

Lena  
(RBF kernel) 43.05 46.19 2.18 2.71 

5.2. Image edge detection based on SVMF 

As a second application, an approach for edge detection is 
presented using a different point of view from the traditional [10]. 
In our case, we do not try to approximate the derivative or use 
other mathematical methods to detect edges in an image. The main 
idea, in this case, is to train the SVM filter to recognize the 
presence of edges in an image. This application derives from the 
design based on edge and structures to be preserved. 

In order to get an appropriate generalization, a new set of 3x3 
masks are designed. Figure 3 depicts some of the designed masks 
that are used to train the SVM corresponding to the decision 
structure filter. The masks are designed such that the edge 
information of the image is captured by the filter while the 
impulsive noise is removed. Three groups of training vectors were 
created to detect: vertical, horizontal and diagonal edges and they 
are used to train three SVM. The kernel functions used in the SVM 
is the RBF kernel. 

 

 

 
Figure 3. Example of SVM training masks to detect edges and 
elimination of noisy component. (a) horizontal edges, (b) vertical 
edges, (c) diagonal edges.  

The designed masks allow that edge detection using the SVM 
filter can be generalized to any kind of image either non-noisy or 
noisy ones.  

For a SVM filter denoted by Eq. (8), it is possible to define a 
function that permits to detect edges in images. SVM filter for 
edge detection output is defined as: 

(a) 

(b) 

(c) 
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where EH, EV and ED, correspond to the output of the three SVM 
filters, as in Eq. (8), trained using masks like the ones show in Fig. 
3, that detect horizontal, vertical and diagonal edges, respectively. 
The value of Th is a tunable parameter that can be adjusted as a 
tradeoff between the among of edges to be detected and the noise 
immunity. High threshold values yield robustness to impulsive 
noise but lose some of the real edges, whereas low values result in 
many false edges induced by the impulse noise. The outputs of the 
three SVM are combined to find the total amount to which any 
edge exist, this value is the compared to the threshold Th to 
determine the existence of an edge. 

The performance of the proposed edge detection approach is 
compared to those yielded by traditional edge detection methods, 
among them: Sobel, Canny, Prewitt and Roberts, which have been 
widely used in digital image processing [11]. 

 
Figure 4. Edge detection in images (a) Original with noise 5%, (b) 
SVM filter, (c) Sobel edge detector, (d) Canny edge detector, (e) 
Prewitt edge detector, (f) Roberts edge detector. 

 
Figure 5. Edge detection in images (a) Original with noise 5%, (b) 
SVM filter, (c) Sobel edge detector, (d) Canny edge detector, (e) 
Prewitt edge detector, (f) Roberts edge detector. 

Figure 4 shows SVM filter performance in edge detection in 
noise images. Edge detection using SVM filter is superior to the 
rest of the methods. The image obtained in Fig. 3 (b) reflects the 
generalization capabilities of the proposed method since SVM 
filters not only eliminate impulsive noise effectively, but also 
many details (edges) from the original image are suitably detected. 

A second example that shows the performance of the 
proposed filter in edge detection in noise images is shown in Fig. 
5, as before, it is easy to see the superior performance of the edge 
detection method using SVM filter compared to those yielded by 
traditional edge detection method. Note that most of the edges are 
preserved while the noise is removed. 

6. CONCLUSSIONS 

In this work, a new family of non-linear filters based on SVM is 
presented. The proposed filter is based on the general concept of 
binary filters where the characteristic function of the Boolean filter 
is replaced by a SVM. The obtained results for the new filtering 
approach show a better performance than traditional methods 
either in the noise elimination or the edge detection, behaving as a 
competitive filter for digital image processing.  
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