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ABSTRACT

This paper proposes a new approach to simultaneously estimate 
time-varying intensity functions of multiple point processes from 
their continuous-time signal representation. We use models of 
neural response properties in the cortex to illustrate the theory of 
the proposed approach. Based on sparse representation of the 
continuous-time signals in the context of compression, it is shown 
that intensity functions can be approximated reasonably well 
without the need to decompress and classify the source signals. 
The approach is best suited for the case when multiple point 
processes are characterized by non-binary spike waveforms 
observed with an array of sensors. When spike waveforms from 
different sources are correlated, the estimated intensities can be 
inaccurate due to spike classification errors. We therefore build on 
our previous work for separating correlated spike waveforms to 
enable enhanced separation of those intensity functions. We finally 
show that this framework leads to substantial savings in 
computational complexity for real time operation in resource 
constrained signal processing systems. 

      Index Terms- point process, rate estimation, sparse 
representation, neural recordings, brain machine interface, 
compressed sensing.

1. INTRODUCTION

Advanced sensing methodologies have increased the shear 
amount of data that needs to be acquired from distributed signal 
sources to infer useful information about phenomena of interest. In 
attempting to circumvent the information retrieval problem from 
large volumes of measured signals, one is interested in inferring 
the parameters of the random process underlying the generation 
the observed data. In many applications, point processes have been 
typically used to describe discrete event data. Discharge rate of 
nerve cells is a classical example where a point process is used to 
describe the neuronal response to some intrinsic and extrinsic 
conditions over time.

For the case of neuronal point processes, a neuron “fires” an 
action potential (AP) in the form of a spike waveform indicating 
that the membrane potential has exceeded the voltage threshold 
due to the influence of ionic current from gated channels in the 
membrane. The information in the spike train lies foremost in the 
time of occurrences of each spike. It is thus of paramount 
importance to estimate the intensity function underlying the point 
process to understand how the information is encoded in a larger 

neuronal population. It is believed that this function is the 
fundamental source of information coding in the nervous system.  

Recently, Brain Machine Interface (BMI) applications 
demonstrated the utility of implantable high-density 
microelectrode arrays in recording ensemble neural activity in the 
cortex that can be subsequently decoded to control external 
devices [1]. A challenging problem in this application is the ability 
to transmit large throughput neural data from the implanted device 
to the outside world for further analysis. Brain implants are thus a 
novel example of resource-constrained signal processing systems 
in which severe restrictions in size, power dissipation, and energy 
consumption are imposed. It is therefore desired to minimize the 
computational complexity of the implantable system, yet infer the 
useful information, in this case the intensity functions of the 
recorded population, early in the data stream.   

Previous attempts to estimate rate functions of neuronal point 
processes from single trials have been reported [2]. Thereof, an 
empirical approach using arbitrary chosen kernel functions was 
proposed. It was reported that the main parameters influencing the 
quality of the estimator were the shape of the basis and its width, 
which determines the temporal resolution of the rate estimator. In a 
previous study [3], we proposed a distributed compression 
technique relying on sparse representation of the spatiotemporal 
patterns of neural activity. The compressed signals, typically 
resulting from multiple neurons, have to be decompressed once 
received outside the cortex, then separated to multiple single-
neuron spike trains.

The objective of this paper is to propose a new technique based 
on the compression scheme proposed in [3] for directly estimating 
intensity functions of neural point processes from continuous-time 
neural data that have been regularly sampled and compressed with 
a sparse representation operator. Herein, the shape of the kernel 
will depend on the particular choice of the basis that sparsifies the 
data as much as possible. 

2.  THEORY 

2.1 Single point process model 

For a point process with deterministic continuous-time intensity 
function )(tr , the integral over a finite interval ],[ ba TT
represents the expected number of events N encountered during 
that interval 
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In many applications, the observations consist of the time of 
occurrence of the N events. From this knowledge, the goal is to 
estimate the intensity function that resulted in the observed 
discrete event process. In practice, this is done by binning the data 
in equal intervals and counting the number of events within that 
interval. Generally speaking, the large variability observed in the 
point process data mandates averaging across multiple trials to 
reduce the statistical variations in the estimated intensity function. 
An example is illustrated in Figure 1 for 30 trials based estimator.  
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Figure 1: Intensity function and associated point process for 30 
trials. Estimate using a 30 ms bin width averaged across trials. 

Outside the range where the intensity function is time 
varying, the variability observed in Figure 1 can be regarded as 
“process noise”. We’ll use the additive noise model below to 
describe the observed point process as 

ze)y
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where both e  and z are binary. The occurrence of 1’s in e  is 
very “regular” in the sense that )(tr  can be reliably estimated 

from observing e without trial averaging. This is feasible if )(tr
has some discontinuities that is translated into a sudden change in 
the event count. On the other hand, the occurrence of 1’s in z can
be regarded as spurious events that do not positively contribute to 
estimating strong variations in )(tr  in a given trial and therefore 
their effect is reduced through trial averaging. This is most 
pronounced when )(tr  is very smooth and approaches a constant. 

2.2 Sparse representation 

In certain applications, the occurrence of an event in the point 
process is typically represented by a short rapid transient signal 
waveform - a spike- with duration eT . Measurement noise can 
sometimes obscure the spike waveforms if the Signal-to-Noise 
Ratio (SNR) is low. To estimate the event occurrence times and 
hence the intensity, a threshold is calculated based on the noise 
level. An event is declared whenever the spike surpasses that 
threshold. The specific time of event occurrence is arbitrarily taken 
from within the spike interval eT  (e.g. the zero crossing of the 
spike). However, the measurement noise may lead to erroneous 

event times or excess event counts thereby contributing to a poor 
estimator of the rate.  

Assuming that the continuous-time signals are adequately 
sampled by sf , each event is thus represented by the 1se fT
dimensional vector s. If s is known to be highly compressible in a 
known basis (such as wavelets), a sparse representation operator is 
desired to map s to the smallest number of transform coefficients, 
ideally one most significant coefficient centered at the event time. 
If a fixed universal basis is used, the sparse representation results 
in possibly more than one transform coefficient depending on an 
acceptable level of reconstruction error [4]. When the events are 
“regularly” spaced and the basis is matched to s, the sparse 
representation can be an efficient way to approximate any sudden 
jump in the rate. This can be seen by observing that: first, the most 
significant coefficients in this best basis are much higher in 
magnitude than any other basis; and second, they occur following 
the same regularity pattern as the events in e. Since sudden jumps 
in the rate are associated with a large increase/decrease in the 
number of events, this results in ridges in the sparse representation 
that indicate the presence of a sudden jump in the rate.

Let’s explore this case further. With the sparse representation, 
(2) can be expressed as

1,...,0 Jjjjj zey    (3) 

where J is the total number of basis. The rate in a given basis span 
(subband j) is expressed as 
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where jw  is the wavelet basis spanning subband j, tN  is the 

number of events in e , and sN is the number of events in z  so 

that st NNN . Equation (4) is a direct result of convolving 
the basis kernel with the irregularly spaced impulse train y in (2). 
When y is non-binary, (2) and (4) can be used to obtain  
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where js  and jv denote the projection of the spike waveforms 

with time of occurrences in e and z , respectively onto the span 
of the basis jw . The effect of the process noise term z  is 

averaged out if the kernel support is large enough and will depend 
on the “resting time” of the rate function to some constant value.

2.3 Single sensor of multiple point processes 

Let’s now consider the case where we observe P > 1 point 
processes characterized by their observed spike trains. Each point 
process is characterized by a distinct spike waveform ps . The 

model in (2) can be expanded to yield  
VSY      (6) 

where the rows of S and V are the spike trains from the P
sources. The sparse representation of Y will therefore be 

jjj VSY 1,...,0 Jj   (7) 
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From jY , the goal now is to estimate the PxN matrix of intensity 

functions jR  where each entry is given by 
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k
kj

N

i
ijj nnpnnpnpr

11

],[],[),( VS   (8) 

When a single sensor is used, the problem becomes more 
challenging since only one estimator can be computed as  
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This estimator is a mixture of rate estimators of every point 
process. For a particular point process q, the goodness of its 
individual rate estimator in (9) will heavily depend on minimizing 
the contribution of the estimators from other processes, i.e. 
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If knowledge of the identity of the spike waveforms (i.e. to which 
point process they belong) and their locations in time is available, 
one may be able to sort out the specific time indices of event 
occurrences. However, the objective is to be able to estimate the 
rate of each individual process without actually detecting and 
sorting the individual spike waveforms. For a particular point 
process, forcing a minimum contribution from other sources has to 
rely on a pronounced difference in the spike waveform projections, 
if any, on the basis jw . Specifically, the degree to which the rate 

of the qth point process can be faithfully estimated from the mixed 
rate in (9) depends largely on the ratio of jq ws ,  to 

pqws jp ,, , where  denotes a dot product. 

2.4 Multiple sensors of multiple point processes

The problem of sorting out distinct intensity functions from a 
mixed rate estimator obtained from a single sensor becomes very 
challenging if the spike waveform shapes associated with different 
sources are correlated. In this case, the ratio of jq ws ,  to 

pqws jp ,, , will be a function of the correlation 

coefficient between the spike waveforms. Separating multiple rates 
from the estimated mixture can be eased if an array of sensors is 
utilized to record the population. The model in (6) can be 
generalized in this case to incorporate M sensor array observation 
matrix expressed as 
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 where A denotes a full rank MxP mixing matrix. When the mixing 
matrix is not equal to the identity, each of the P spike trains can be 
represented on every sensor with energy inversely proportional to 
the distance from the signal source. For the scope of this paper, it 
will be assumed that the mixing is stationary, i.e., A is time 
invariant during the period where the intensity functions are being 
estimated. Therefore, A can be factored out to yield 
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Now following (10), the contribution of the estimators from other 
processes can be reduced by observing that for those subbands 
where jq ws ,  dominate over pqws jp ,, , the signal 

subspace spans that of the qth column of A, denoted qa , or 

equivalently the qth row of S. A best basis search is performed to 
find those bases where the qth signal subspace remains invariant. 
A best basis tree is obtained in which the nodes with the best rate 
estimator for the qth process can be found. The process is repeated 
for other columns of A. For the lack of space, the interested reader 
is referred to the description of the MASSIT technique reported in 
[6].  

2.5 Process Noise

As stated before, estimating R reliably depends on minimizing the 
effect of measurement and process noises. The first effect is 
automatically minimized during the best basis search outlined 
above in which denoising [7] is further performed. The second 
effect is minimized by selecting a particular node among the best 
basis tree where the effect of irregularities caused by process noise 
is minimized. This would be proportional to the duration in which 
the rate has sudden jumps so that the regularity term dominates. If 
the time resolution of the basis is wide enough to capture the 
fastest time constant of the underlying intensity function, it is 
anticipated that within the best basis subset, the particular basis 
with support simultaneously matching the time constant of the 
regularity term and having the highest compression capability of 
the spike waveform will be the best in suppressing the process 
noise effect. The goal of the sparse operator can be therefore 
summarized as: 

1- Reduce the contribution of the noise term on the rate 
estimator. 

2- Determine the optimal resolution level in which the rate 
estimation error is minimized.  

As a metric of performance, we’ll use the mean square estimation 
error

Q
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where Q is the number of samples used to discretize )(tr .

3. RESULTS

We present here results from simulated data with actual non-binary 
spike waveforms. The point processes followed the model in [2] in 
which the event occurrences consisted of a background neural 
response and a phasic response as illustrated in Figure 1. The 
Poisson rate model )(][ 0nnnr was based on three 

parameters ,  and 0n  denoting the background rate, the 

strength, and the onset of the evoked response, respectively.
Figure 2 illustrates an example of the measured signals for 
noiseless single point process data. Figure 3 illustrates the MSE 
relative to the time domain rate estimator for two neurons. The 
spike waveform of each neuron is also shown. We used a fixed
symmlet4 basis for the sparse representation operator. Minimum 
error rate estimators are illustrated for the best basis projections. 
As can be seen, basis expressing the highest compression for each 
signal coupled with a support that lasts over a period comparable 
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to the phasic response duration are preferred for capturing the 
regularity in event occurrences. We assessed in Figure 4 the 
performance with respect to the background rate. It was observed 
that the MSE increases for increasing background rate . This is 
expected since the variance of the Poisson process is proportional 
to its average rate.  

4. CONCLUSION

A new approach for simultaneously estimating rate functions of 
multiple discrete point processes was presented. Particular 
emphasis was given to the case when the point processes are 
characterized by non-binary spike waveforms in which sparse 
representation was shown to yield a better alternative to classical 
averaging across trials. A model of the point process was proposed 
that involves a regular term useful to estimate abrupt changes in 
the process, and an irregularity term modeling statistical variations 
across trials and is useful to estimate the constant portion of the 
time varying rate. Aside from compression advantages in a 
bandwidth-limited system, it was shown that the sparse 
representation of the non-binary spike trains yields additional 
advantages in simultaneously enabling both the regular and 
irregular components of the rate function to be reliably estimated. 
The irregular component can be estimated from relatively short 
basis support by averaging across a small number of trials, while 
the regular component is estimated from relatively longer basis 
support that depends on the time constant of the time varying 
portion of the rate. Besides the sparsity introduced in time, it was 
also argued that multiple sensors improve the ability to discern the 
desired rates based on additional sparsity in space. This would be 
obtained through a low rank approximation of the signal subspace 
components. The technique proposed is applicable to a wide 
variety of applications where multivariate spatiotemporal point 
processes with time varying intensity functions are observed in a 
distributed environment. 
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Figure 2: Sample rate function with non binary events. 

Figure 3: Performance for two non-binary spike trains. 
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Figure 4: Performance versus background rate
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