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ABSTRACT 
 
The detection of period-3 components in exons of 
eukaryotic gene sequences enables signal processing based 
time-domain and frequency-domain methods to predict these 
regions. In this paper, we improve the prediction accuracy of 
frequency-domain methods by proposing a new algorithm 
known as the paired and weighted spectral rotation (PWSR) 
measure, which exploits both period-3 behaviour and 
another useful statistical property of genomic sequences. By 
comparison with existing frequency-domain approaches, the 
proposed PWSR method reveals relative improvements of 
15.2% and 10.7% respectively over spectral content and 
spectral rotation measures in terms of prediction accuracy of 
exonic nucleotides at a 10% false positive rate using the 
GENSCAN test set. Finally, we combine the proposed 
PWSR with an existing time-domain method to demonstrate 
further signal processing-based improvements in gene and 
exon prediction accuracy. 
 

Index Terms— DNA, Signal processing, Correlation, 
Discrete Fourier transforms, Time-frequency analysis 
 

1. INTRODUCTION 
 

Deoxyribonucleic acid (DNA) consists of genic and inter-
genic regions. In eukaryotes, genes are further divided into 
relatively small protein coding segments known as exons, 
interrupted by non-coding spacers known as introns. The 
DNA codons (i.e., triplets of available four types of DNA 
nucleotides A, C, G, and T) in exon regions encode 20 
amino acids and 3 terminator signals. In exons, occurrences 
of identical nucleotides in identical codon positions is the 
basis for a periodicity of three interpretation in these regions 
[1]. The periodicity of three behavior of exons in genomic 
sequences has been widely used to identify these regions 
using techniques such as the autocorrelation function (ACF) 
[1], discrete Fourier transforms (DFT) [2, 3, 4, 5], time-
domain algorithms [6], singular value decomposition [7], 
etc. Accurate exon prediction requires detection of all of the 
nucleotides in the exon. Despite the existence of many 
digital signal processing (DSP) applications in this area, the 
accuracy of exon detection is still limited. The problem is 
difficult mainly due to noncontiguous and non-continuous 
nature of genes. Furthermore, often the intergenic and 

intronic regions make up most of the genome. For example, 
in the human genome the exonic fraction is as low as 2%. 
Existing DSP applications in this area can be divided into 
time-domain and frequency-domain methods. Previous work 
[8] has shown time-domain techniques perform better than 
frequency-domain methods for the detection of short coding 
regions. Despite the existence of these approaches and also 
data-driven approaches, the accuracy of exon prediction still 
needs to be improved. Furthermore, in terms of signal 
processing approaches exploiting period-3 behavior, there 
has been little comparative work examining exon prediction 
at the nucleotide level on large databases. In this paper, we 
review and compare existing approaches, and propose a new 
algorithm which exploits an alternative statistical property of 
sequences, computing DFT magnitude and phase angle on 
both DNA strands. 
 

2. EXISTING METHODS FOR EXON PREDICTION 
 

In order to apply digital signal processing techniques herein, 
the genomic sequences are first converted into four binary 
indicator sequences xA[n], xC[n], xG[n], and xT[n] similar to 
[7], showing the presence or absence of the respective 
nucleotides. Out of many available period-3 detection 
methods, here we consider only three (two ‘frequency-
domain’ and one ‘time-domain’ approach). 
 
2.1. Spectral Content (SC) Measure 
 

In this fundamental frequency-domain method, sliding 
window DFTs of four indicator sequences are employed. 
The periodicity of three suggests a DFT peak at k = N/3 in 
exons, where N is window size, so that calculation of DFT at 
that point is sufficient. The window can then be moved by 
sliding one or more points. The plot of 
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has been used as a SC measure [2] , where XA[k], XC[k], 
XG[k], and XT[k] represent DFTs of indicator sequences. 
 
2.2. Spectral Rotation (SR) Measure 
 

Kotlar and Lavner [4] recently proposed a modification to 
the DFT-based SC measure. They found that the 
distributions of the DFT phase angle at frequency 2π/3 for 
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coding regions (i.e., exons) are narrower around a center 
value than those of non-coding regions, which are almost 
uniform, within genomic sequences of one particular 
organism. They proposed the SR measure, which rotates 
four DFT vectors XA[k], XC[k], XG[k] and XT[k] clockwise, 
each by an angle equivalent to the average phase angle value 
in coding regions μl, to make all of them ‘point’ in the same 
direction. The SR measure also divides each term by the 
corresponding phase angle standard deviations σl to give 
more weight to narrower distributions. The feature 

[ ] [ ] )2(),,(
2

TandGCAlkX
e

kSR
l

l
l

j l

==
−

σ

μ

 

has been used for the detection of exons [4]. 
 
2.3. Average Magnitude Difference Function (AMDF) 
 

This well-known time-domain method can be adapted for a 
numeric DNA sequence x[n] as a function of period k = 3: 
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where N is the window size. The deep null produced by the 
AMDF at k=3 can be used for exon prediction. We have 
found in practice that this is enhanced by pre-processing 
with a second-order resonant filter tuned at 2 /3, to 
emphasize the period-3 component. A linear combination of 
the AMDF outputs for each of the four indicator sequences 
gives the final feature values for exon prediction [6]. 
 

3. PWSR AND COMBINED TIME–FREQUENCY 
EXON PREDICTION 

 
3.1. Nucleotide properties in exonic regions 
 

In exon regions, it has been observed that the frequency of 
occurrence of DNA nucleotides ‘C’ and ‘G’ is higher than 
‘A’ and ‘T’.  In particular, introns are rich in nucleotides ‘A’ 
and ‘T’ whereas exons are rich in nucleotides ‘C’ and ‘G’ 
[9]. Furthermore, if we calculate DFT phase angle histogram 
distributions for coding and non-coding regions from the 
GENSCAN learning set [10], we observe smaller and 
equivalent angular means for distributions of nucleotides ‘C’ 
and ‘G’ than those of ‘A’ and ‘T’. To fully exploit this 
property, we pair these nucleotides and define two indicator 
sequences (i.e., xA-T[n] and xC-G[n]), which also reduces the 
cost of DFT processing. A similar approach was used by 
Datta and Asif [5], however no motivation for the ‘A-T’ and 
‘C-G’ pairing was given. Figure 1(a) shows DFT phase 
angle histogram distributions for all coding and non-coding 
nucleotides from the GENSCAN learning set. There is little 
difference in coding and non-coding distributions, contrary 
to claims in [4]. The distributions shown in Figure 1(b) were 
then obtained by averaging the phase angle values over each 
coding and non-coding regions for individual nucleotides 

(i.e., one phase angle value for one complete coding or non-
coding region, per nucleotide). A roughly bell-shaped 
distribution for coding regions can be observed in this case, 
with distinct differences from that of the non-coding regions. 
These differences can be exploited by weighting the 
contributions of xA-T[n] and xC-G[n] differently, based on the 
means and variances of each sequence, as proposed in the 
following section. 
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Figure 1. DFT phase angle distributions for coding and non-
coding regions of four indicators using GENSCAN learning 
set, (a) calculated at nucleotide level, and (b) averaged over 
each entire coding and non-coding region. 

3.2. Paired and Weighted Spectral Rotation (PWSR) 
Measure 
 

As explained in section 3.1, we convert DNA sequences into 
two binary indicators (i.e., xA-T[n] and xC-G[n]). Using 
training data from DNA sequences of the same organism, we 
calculated means and standard deviations of the distributions 
of DFT phase angle averaged over coding regions (i.e., one 
phase angle value for one coding region). We also calculated 
weights based on the frequency of occurrence of nucleotides 
‘A or T’ and ‘C or G’ in coding regions of the training data. 
The expression given in (4) is thus proposed as a measure of 
output feature value in one direction of the DNA sequence: 
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where l = forward (F) and reverse (R) directions of DNA 
sequence, m and m (m = A-T, C-G) are mean and standard 
deviation values obtained from distributions of the DFT 
phase angle averaged over coding regions using the 
GENSCAN learning set (here, A-T = 0.1522, C-G = 0.0675, 

A-T = 0.3984, and C-G = 0.4187), wm are frequency of 
occurrence weights using the GENSCAN learning set (i.e., 
wA-T = 0.4368, and wC-G = 0.5632), and Xm[k] are the sliding 
DFT windows of two indicator sequences. In a sliding 
window DFT, we normally calculate the DFT at a single 
point (i.e., k = N/3 where N is the window size) which 
suggests that different DFT results will be obtained at a 
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particular location of the DNA sequence when moving the 
window in different directions (i.e., the 5  to 3  and 3  to 5  
directions of the same sequence). The expression in (4) is 
used in the reverse direction of the same DNA sequence 
(note that due to the paired indicator signals xA-T[n], xC-G[n], 
a DFT in the reverse direction of the same DNA strand is 
equivalent to DFT on its complementary strand). The 
proposed PSWR measure is then the combination of forward 
and reverse measures: 
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Figure 2. Block diagram for the proposed time-frequency 
hybrid measure 

3.3 Time-Frequency Hybrid (TFH) Measure 
 

We then combine ‘time’ and ‘frequency’ domain methods, 
since the DFT phase angle produces entirely different 
information to the ‘time’-domain magnitude-based AMDF. 
It has already been shown by Kotlar and Lavner [4] that 
additionally considering the DFT phase angle is more 
informative than the magnitude alone. As seen in Figure 2, 
the proposed PWSR measure is combined with the AMDF, 
which has previously been found to produce better accuracy 
than other magnitude-based approaches [8]. A simple fusion 
approach is employed, in which the features from each 
method are normalized to the range [0, 1] and combined 
with an unweighted sum. The resultant features are then used 
to discriminate coding and non-coding nucleotides. The 
length of the analysis window is also an important 
performance parameter. A shorter window may miss 
detection of larger exons and vice versa. In the proposed 
hybrid measure, different analysis window lengths were 
empirically determined for the AMDF and PWSR methods 
to ensure the optimal detection of both short and long exons. 

 
4. EVALUATION  

 

4.1. Databases  
 

Two datasets consisting of human genomic sequences were 
employed for training and testing of methods: the 
GENSCAN learning set (188 multi-exon sequences), and the 

GENSCAN test set (64 available multi-exon gene 
sequences), as listed in [10]. 
 
4.2. System Configurations 
 

A constant window size of 351 was used for all DFT-based 
methods in this work (i.e., SC, SR, and PWSR), consistent 
with previous work [2, 3, 4, 5]. Empirically, we found a 
frame size of 117 more suitable for the AMDF method [8]. 
In the SR implementation, mean and deviation values were 
obtained from average phase angle distributions for coding 
regions from the GENSCAN learning set. 
 
4.3. Evaluation Criteria 
 

In order to measure and compare the discriminatory power 
of all methods, we compared their prediction results at the 
nucleotide level, contrary to the existing comparisons at 
exon level or gene level, e.g. [4]. In exon-level detection, the 
feature value for one point (i.e., nucleotide) in an exon being 
greater than a decision threshold is sufficient for the 
detection of that particular exon. Here, we consider the 
feature values of all nucleotides in an exon, giving more 
insight into the robustness of a particular detection method. 
We calculate the percentage number of false positives and 
percentage specificity at different levels of percentage 
sensitivity. A threshold output feature value ‘Th’ at a 
particular level of percentage sensitivity ‘s’ is the minimum 
value for which ‘s%’ of the exonic nucleotides have feature 
value greater than ‘Th’ [10]. The specificity can be defined 
as TP/(TP+FP), where TP = number of true positive 
nucleotides, and FP = number of false positive nucleotides. 
We also plot ROC curves for all methods. An ROC curve 
explores the effects on TP and FP as the position of an 
arbitrary decision threshold is varied, and plots the TP as a 
function of FP of exonic and intronic nucleotides. One way 
of characterizing this result as a single number is to calculate 
the area under the ROC curve, with larger areas indicating 
more accurate detection methods. We also show the 
percentage of exonic nucleotides detected as false positives 
by each method for 10%, 20% and 30%, since false 
positives inevitably occur in computational methods due to 
the fact that intronic and intergenic nucleotides make up 
more than 95% of the eukaryotic genomes. 
 
4.4. Results and Discussion 
 

From the specificity vs. sensitivity, ROC curve and area 
under ROC curve results summarized in Figures 3 and 4, 
and Table 1, we see that: 

(i) the proposed DFT based PWSR measure outperforms 
two existing frequency-domain methods, giving consistently 
higher levels of specificity at each sensitivity level and 
improved exonic nucleotide detection, 

(ii) by comparison with existing frequency-domain 
approaches, the PWSR method reveals relative 
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improvements of 15.2% and 10.7% respectively over the SC 
and SR measures in the detection of exonic nucleotides at a 
10% false positive rate, 

(iii) by comparison with the exiting time-domain method 
AMDF, the PWSR method gives consistently higher levels 
of specificity at each sensitivity level up to 40%, promising a 
relatively improved gene and exon prediction, 

(iv) the time-domain AMDF method is more effective at 
extracting period-3 based features compared with frequency-
domain methods for this application, and 

(v) the proposed hybrid measure (TFH) is superior to 
AMDF alone and all other methods in this comparison. 
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Figure 3. Specificity vs. sensitivity plot using GENSCAN 

test set 
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Figure 4. ROC plot using GENSCAN test set 

Table 1. Summary of results 

% of exonic 
nucleotides detected 

as false positive Method 

Area 
under 
ROC 
curve 

% impr. 
over SC 

10%  20% 30% 
SC  0.77778 - 46.7 61.6 71.0 

SR 0.78002 0.29 48.6 62.9 72.4 

PWSR 0.81232 4.44 53.8 68.7 77.3 

AMDF 0.83375 7.20 56.2 72.9 81.7 

TFH 0.84484 8.62 59.5 74.9 81.6 

 

5. CONCLUSION 
 
This paper has reviewed three selected existing signal 
processing methods for gene and exon prediction in 
eukaryotes. In addition to period-3 behaviour, we have 
exploited another very useful statistical property of DNA 
sequences, proposing the paired and weighted spectral 
rotation (PWSR) measure for gene and exon prediction. A 
time-frequency hybrid measure has also been introduced that 
successfully combines the PWSR with the time domain 
AMDF technique. Using the GENSCAN test set of human 
genomic sequences, the new PWSR measure outperforms 
well-known frequency-domain spectral content and spectral 
rotation measures, while the proposed hybrid measure 
provides improved prediction accuracy relative to all 
existing methods. Future work will apply these new signal 
processing techniques to the detection of other biological 
signals (e.g. acceptor/donor splice sites, start/stop codons) in 
order to make a full comparison with state of the art data-
driven gene and exon prediction packages such as 
GENSCAN. 
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