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ABSTRACT

In biological sequence classi cation, it is common to convert
variable-length sequences into xed-length vectors via pairwise se-
quence comparison. This pairwise approach, however, can lead to
feature vectors with dimension equal to the training set size, causing
the curse of dimensionality. This calls for feature selection methods
that can weed out irrelevant features to reduce training and recog-
nition time. In this paper, we propose to train an SVM using the
full-feature column vectors of a pairwise scoring matrix and select
the relevant features based on the support vectors of the SVM. The
idea stems from the fact that pairwise scoring matrices are symmetric
and support vectors are important for classi cation. We refer to this
approach as vector-index-adaptive SVM (VIA-SVM). We compare
VIA-SVM with other feature selection schemes—including SVM-
RFE, R-SVM, and a lter method based on symmetric divergence
(SD)—in protein subcellular localization. Results show that VIA-
SVM is able to automatically bound the number of selected features
within a small range. We also found that fusion of VIA-SVM and
SD can produce more compact feature subsets without decreasing
prediction accuracy, and that while VIA-SVM is superior for large
feature-set size, the combination of SD and VIA-SVM performs bet-
ter at small feature-set size.

Index Terms— Feature selection, pairwise scoring, kernel meth-
ods, SVM, subcellular localization

1. INTRODUCTION

The comparison of two temporal sequences are often hampered by
the fact that the two sequences often have different lengths whether
or not they belong to the same family. To overcome this problem,
pairwise comparison between a sequence and a set of known se-
quences has been a popular scheme for creating xed-size feature
vectors from variable-length sequences [1–3]. Although this pair-
wise approach can usually create feature vectors with better discrim-
inative properties, it also has its own limitation. The main problem is
that the feature dimension is the same as the number of training pat-
terns. This creates a curse of dimensionality, because the training
set size could be very large. In fact, for the applications addressed in
this paper, they are in the range of several thousands. The downside
of such a curse of dimensionality is that it could hurt both training
and recognition speed. Because a large number of sequences are be-
ing added to sequence databases in a daily basis, it is imperative to
reduce the complexity of the pairwise scoring approach.
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An obvious solution to the curse of dimensionality problem is
to reduce the feature size and yet retaining the most important in-
formation critical for the classi cation of the training patterns. Re-
search has found that just over 10% of the pro le contributes 90%
of the total score for positive training sequences [4], suggesting that
some features are more relevant to classi cation than the others. The
feature size can be reduced by either nding principle subspace or
weeding out those less signi cant features. This paper takes the lat-
ter approach.

In this paper, we propose a novel method that uses the symmetric
property of pairwise scoring matrices to select the relevant features.
The method considers the columns of a pairwise scoring matrix as
high-dimensional vectors and uses the column vectors to train a lin-
ear SVM. Because of the symmetric property of the score matrix,
the row vectors with row indexes equal to the support vector indexes
are identical to the support vectors. Also, because the support vec-
tors de ne the decision boundary and margins of the SVM, they are
critical for classi cation performance. Therefore, the support vec-
tor indexes are good candidates for selecting features for the col-
umn vectors, i.e., only the rows corresponding to the support vectors
are retained. The column vectors with reduced dimension are then
used to train another SVM for classi cation. Because the indexes of
support vectors are used to select relevant features, we referred this
method to as vector-index-adaptive SVM, or simply VIA-SVM.

We compared VIA-SVMwith our recently proposed FDA-based
feature selection [5], Guyon et al.’s SVM-RFE [6], and Zhang et al.’s
R-SVM [7] in a subcellular localization benchmark, and found that
this SV-based selection scheme not only avoids setting a cutoff point
but also insensitive to the penalty factor in SVM training.

The paper is organized as follows. Section 2 de nes the pairwise
scoring kernels for SVM classi cation. The algorithmic details and
theoretical analysis of VIA-SVM are discussed in Section 3. The
method is then evaluated via a subcellular localization tasks in Sec-
tion 4, which is followed by some concluding remarks in Section 5.

2. PAIRWISE SCORING KERNELS

Denote D = {S(1), . . . , S(T )} as a training set containing T pro-
tein sequences. Let us further denote the operation of PSI-BLAST1
search given the query sequence S(i) as

φ(i) ≡ φ(S(i)) : S(i) −→ {P(i),Q(i)},
1To ef ciently produce the pro le of a protein sequence (called query

sequence), the sequence is used as a seed to search and align homologous se-
quences from protein databases such as Swissprot [8] using the PSI-BLAST
program [9].
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whereP(i) andQ(i) are the PSSM and PSFM of S(i), respectively.2
Because these matrices are based on the information of a large num-
ber of sequences that are similar to the query sequence, they contain
rich information about the remote homolog of the query sequence,
which may help improves the prediction of subcellular locations and
protein functions. Given the pro les of two sequences S(i) and S(j),
we can apply the Smith-Waterman algorithm [10] and its af ne gap
extension [11] to align P(i),Q(i), P(j), andQ(j) to obtain the nor-
malized pro le-alignment score ζ(φ(i), φ(j)).3

The scores {ζ(φ(i), φ(j))}T
i,j=1 constitute a symmetric matrixZ

whose columns can be considered as T -dimensional vectors:

ζ(j) = [ζ(φ(1), φ(j)) . . . ζ(φ(T ), φ(j))]T j = 1, . . . , T. (1)

An M -class protein prediction problem can now be solved by M
one-vs-rest SVMs:

fm(S) =
�

j∈Sm

ym,jαm,jK(φ(S), φ(S(j))) + bm (2)

where S is an unknown sequence,m = 1, . . . , M , ym,j ∈ {+1,−1},
Sm contains the indexes of support vectors, αm,j are Lagrange mul-
tipliers, and

K(φ(S)), φ(S(j)) = g(ζ, ζ(j))

is a kernel function.
Now we may consider the columns of a pairwise scoring ma-

trix as high-dimensional vectors. This means that there are T fea-
ture vectors with dimension equal to the training set size. The T
T -dimensional column vectors can be used to train M SVMs. Be-
cause of the high dimensionality, linear SVM is a preferred choice,
i.e., g(ζ, ζ(j)) =< ζ, ζ(j) >. The class of S can then be obtained
by y(S) = arg maxM

m=1 fm(S), whereM is the number of classes.

3. FEATURE SELECTION VIA VIA-SVM

The pairwise approach always results in feature vectors with ex-
tremely high dimension. This creates a problem known as the curse
of dimensionality. An obvious solution is to reduce the feature size
and yet retaining the most important information critical for the clas-
si cation. The challenge thus lies in how to effectively determine
those relevant features. Moreover, it is preferable to adopt a feature
selection method which is tailor designed for the pairwise scoring
vectors.

Assume that the training vectors are pre-arranged such that the
vectors belonging to the same class are all grouped together, i.e., they
are consecutively indexed. To design a feature selection algorithm
for pairwise scoring vectors, we need to exploit the re exive property
of pairwise scoring matrices. The idea is based on the notion that
support vectors are important for classi cation and pairwise scoring
matrices are symmetric. (Namely, the elements of the i-th column
of Z are identical to those in the i-th row.) This suggests a possible
hypothesis:

The support vector indexes are good candidates for se-
lecting features for the column vectors, i.e., only the
rows corresponding to the support vectors are retained.

2The homolog information pertaining to the aligned sequences is repre-
sented by two matrices (pro les): position-speci c scoring matrix (PSSM)
and position-speci c frequency matrix (PSFM). Both PSSM and PSFM have
20 rows and L columns, where L is the number of amino acids in the query
sequence.

3See http://www.eie.polyu.edu.hk/∼mwmak/BSIG/PairProSVM.htm.

Due to the symmetry property, if the j-th vector is a critical (support-
ing) vector for the decision boundary, then the j-th feature would
also be a critical feature and therefore should be selected. We refer
to this selection scheme as vector-index-adaptive SVM, or simply
VIA-SAM.

3.1. Why Consider Only Support Vectors?

In VIA-SVM, the support vector indices are reused as feature selec-
tion indices. The use of support vectors to select relevant features is
intuitively appealing because they are “critical” for establishing the
decision boundary of SVM classi ers. Because of the symmetrical
property of kernel matrices, the elements of the i-th column of Z are
identical to those in the i-th row. If the i-th column of Z happens
to be a support vector, the corresponding feature dimension (the i-th
row of Z) will also be critical for classi cation. On the other hand,
non-support vectors are irrelevant for classi cation, so as their cor-
responding feature dimensions.

The weight vector of a linear SVM in Eq. 2 is given by w =�
i∈S yiαiζ

(i), where the subscript m has been omitted for nota-
tional simplicity. The diagonal dominance [5] of the score matrix Z
implies that a large value of αi is likely to lead to a large value of
wi. By the same token, the non-support vectors are those correspond
to αi = 0, and therefore their corresponding weight value wi’s are
more likely to be smaller. Therefore, only those features correspond-
ing to αi > 0 are considered for selection. Those corresponding to
αi = 0 will be eliminated automatically.

The above interpretation of VIA-SVM is consistent with how
SVM-RFE [6] selects features in that, in both methods, indexes with
large weight will be chosen rst. Moreover, they both prune the vec-
tors/features corresponding to zero αi. However, there is also an im-
portant difference, which lies in the treatment of the vectors/features
corresponding to non-zero αi. More exactly, in VIA-SVM, different
types of support vectors receive different level of preference.

3.2. Treatments for Different Types of Support Vectors

Because the SVM-RFE takes the overall weight vector w into ac-
count, it only considers the Lagrange multiplers αi but not the slack
variables ξi. In contrast, the VIA-SVM considers both αi (for iden-
tifying SVs) and ξi (for identifying outliers SVs and SVs that fall
on or within the safety margin). In this sense, the VIA-SVM of-
fers a more comprehensive coverage of all the critical factors made
available by the SVM classi er.

In VIA-SVM, support vectors are not treated equally. Instead,
they are divided into three levels of preferences:

1. Most-preferred: The SV is on the margin, if 0 < αi < C
and ξi = 0, where C is the penalty factor in SVM training.

2. Preferred: The SV is in the fuzzy region, if αi = C and
0 < ξi < 2.4

3. Non-preferred: The SV is regarded as an outlier, if αi = C
and ξi ≥ 2.

The reason of ruling out the outlier SVs is self-explanatory. The
decision to have the marginal support vectors assigned the highest
preference level can be justi ed on the basis that they offer relatively
higher con dence than the fuzzy SVs.

The main difference between SVM-RFE and VIA-SVM lies in
the differential treatment on the non-preferred support vectors. In

4When needed, the fuzzy region can be further divided into two subre-
gions separated by the decision boundary.
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SVM-RFE, features with αi = C will be ranked high, regardless of
whether the corresponding support vectors are outliers or not. On
the other hand, VIA-SVM provides a mechanism to disregard these
“unimportant” outliers, which may result in a more compact and rep-
resentative set of features.

3.3. The VIA-SVM Algorithm

Feature selection in VIA-SVM is divided into two steps:
1. The score matrix Z = {ζ(φ(i), φ(j))} is used to train M
SVMs (Eq. 2) from which M sets of support vector indexes
Sm are determined. This results in a set of support vec-
tors ζ(j) = [ζ(φ(1), φ(j)) · · · ζ(φ(T ), φ(j))]T for each class,
where j ∈ Sm.

2. For the m-th class, the indexes in Sm are used to select the
feature dimensions (rows of Z) of the column vectors to ob-
tain vectors ζ

′(j) of reduced dimension, where j = 1, . . . , T .
These vectors are then used to train another SVM for classi-
cation. This process is repeated for all classes.

These two steps are iterated N times (we set N = 5 in this
work). Speci cally, the features selected at the n-th iteration are
used to train a new SVM in the (n + 1)-th iteration, whose support
vectors are subsequently used for determining the feature set in the
(n + 2)-th iteration, and so on. The classi cation accuracy on the
training data at each iteration is recorded. At the end of the N -th
iteration, the support vectors of the SVM with the highest training
accuracy are used for selecting the nal set of features. The column
vectors with reduced dimension are then used to train another SVM
for classi cation.

4. EXPERIMENTS ON PAIRWISE DATA

Two datasets were used for evaluating the performance of VIA-SVM
and for comparing it against other feature selection algorithms. The
rst dataset is provided by Reinhardt and Hubbard [12]. It comprises
2427 amino acid sequences extracted from SWISSPROT 3.3, with
each protein annotated with one of the four subcellular locations:
cytoplasm, extracellular, mitochondrial, and nuclear. The second
dataset was provided by Huang and Li [13]. It was created by se-
lecting all eukaryotic proteins with annotated subcellular locations
from SWISSPROT 41.0 and by setting the identity cutoff to 50%.
The dataset comprises 3572 proteins with 11 classes. We used 5-fold
cross validation for performance evaluation so that every sequence
in the datasets will be tested.

4.1. Comparison of Three VIA Strategies

We shall rst show some case studies and then we will provide the-
oretical justi cations and tradeoff analysis on three VIA strategies.

Strategy 1 (ALL SVs): Select ALL SVs, i.e., marginal and fuzzy
SVs with 0 < αi ≤ C.
Strategy 2 (Remove the non-preferred): Select all but outlier SVs
(i.e., only keep those with ξi < 2).
Strategy 3 (Only the most-preferred): Select only “pure” marginal
SVs (αi < C), while excluding those fuzzy and outlier SVs
(i.e., αi = C).

Because Strategy 1 includes all SVs regardless of their types, it
is likely to cause over selection, particularly when the penalty factor
C is small. Strategy 2 is based on the notion that SVs lying beyond
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Fig. 1. Prediction performance of three strategies of VIA-SVM
on the Reinhardt and Hubbard’s dataset when the penalty factor C
varies from 0.004 to 8,000. See Section 4 for details of the strategies.

the margin of the opposite class are deemed to be outliers and there-
fore should be excluded. Note that in this strategy misclassi ed SVs
that lie within the margin of separation will still be selected, which
may lead to over selection when the penalty factor C is very small.
In Strategy 3, in addition to outliers, SVs that are likely to be mis-
classi ed will also be excluded. In some cases, there may be many
SVs falling on the fuzzy regions, and therefore, excluding all of these
SVs may lead to under selection.

Figure 1 shows the performance of Strategies 1, 2, and 3 when
the penalty factor C varies from 0.004 to 8,000. Note that the num-
ber of selected features (feature dimension) is automatically deter-
mined by the SVMs. The results show that Strategy 1 tends to select
more features, conforming our earlier hypothesis that including all
SVs will lead to over selection. These case studies suggest that Strat-
egy 2, which selects all SVs except the outliers, seems to be the least
sensitive to the penalty factor, because it can keep the number of
features within a small range and maintain the accuracy at a constant
level for a wide range of C.

4.2. Comparison with Other Classi ers

We compared the proposed VIA-SVM (Strategy 2) with our recently
proposed symmetric divergency (SD) [5], SVM-RFE [6], and R-
SVM [7] in the subcellular localization benchmarks mentioned ear-
lier. Note that all these reference methods do not make use of the
symmetric property of the pairwise scoring matrices in the selection
process, because they are primarily designed for gene selections in
microarray data where expression matrices are neither square nor
symmetric.

Figure 2(a) shows the performance of these methods. Evidently,
VIA-SVM is superior to other three methods in two aspects: (1) It
outperforms the others at almost all feature dimensions and (2) it au-
tomatically bounds the number of selected features within a small
range. A drawback of SD, SVM-RFE, and R-SVM is that they re-
quire a cutoff point for stopping the selection. On the other hand,
VIA-SVM is insensitive to the penalty factor in SVM training and
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Fig. 2. Prediction performance of symmetric divergence (SD),
SVM-RFE, R-SVM, and VIA-SVM (Strategy 2) on Huang and Li’s
dataset. (b) Same as (a) but with the fusion of SD and VIA-SVM.

can avoid the need to set a cutoff point for stopping the feature se-
lection process.

As shown in Figure 2(a), the performance of VIA-SVM is al-
ways better than that of other methods, but at the price of having
a larger number of features. To overcome this weakness, we pro-
pose to combine this wrapper approach with a lter approach (SD
in this case) to raise the selection standard. This is discussed in the
following subsection.

4.3. Cascaded Fusion of SD and VIA-SVM

The feature selection process is divided into two stages.

Stage 1: Use VIA-SVM (Strategy 2) to select all-but-outlier SVs,
i.e., only keep those with ξi < 2.
Stage 2: Use SD to sort the features found in Stage 1 and keep the
most relevant x%.

In this work, we set x to 70. Figure 2(b) shows the fusion results
on the Huang and Li’s dataset mentioned earlier. A comparison be-

tween this gure and Figure 2(a) reveal that fusion can produce more
compact feature subsets without decreasing prediction accuracy. We
also note that while VIA-SVM is superior to others for large feature-
set size (cf. Figure 2(a)), the combination of SD and VIA-SVM
performs better at small feature-set size (cf. Figure 2(b)).

5. CONCLUSION

Based on several subcellular localization experiments, the VIA-SVM
appears to be very promising. First, it seems to reach a useful dimen-
sion reduction while conceding minimum sacri ce on accuracy. This
is supported by serval comparative studies. Second, the VIA-SVM
can derive the subset size as well as the subset itself without hav-
ing to guess the “right” penalty factor in SVM training nor the need
to set a “right” cutoff point. In short, it automatically bounds the
number of selected features within a small range.
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