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ABSTRACT

We describe a system for assisting patients in a home setting who
suffer from cognitive impairments due to traumatic brain injury.
The system integrates fixed wireless home sensors and wearable
wireless sensors. We focus on the task of classifying activities of
daily living. We locate and track the subjects with the help of
home sensors and capture the details of an executed activity with a
2-axis wearable wireless accelerometer sensor attached to the right
wrist. We extract time domain and frequency domain features for
each task and classify them with Gaussian mixture models
followed by a majority voter. The majority voter provides low
false positive rates while continuously tracking the tasks. The
experimental results from 2 subjects in recognizing 4 distinct daily
activity tasks are promising.

Index Terms— Activities of daily living, classification,
Gaussian mixture model, wireless sensors

1. INTRODUCTION

The rise in the proportion of elderly people and the shortage of
national medical specialists have generated the need for intelligent
systems that can monitor the subject in a home setting. With the
recent advances in micromechanical devices and wireless
embedded systems, several platforms have been developed to
continuously monitor the physiological parameters of human body,
such as ECG, blood pressure and heart rate [1]. Such systems
which can continuously monitor the health of elderly people and
individuals with various pathologies may enable early diagnosis
and can track the effectiveness of rehabilitation. Cognitive
impairments due to traumatic brain injury (TBI) also require
intelligent systems that can assist the person in carrying out their
daily activities. In general, the frontal lobe of the brain is damaged
in TBI patients due to accidents and falls. Since higher cognitive
functions reside in the frontal lobe, damage to this area causes
patients to have difficulties in completing and focusing on a task
[2]. Furthermore TBI patients need help in planning, organizing
and completing activities. Therefore it is crucial to develop a
system that gives instructions to such patients “when needed” and
continuously monitor their activities in a home setting.

To tackle this problem, reminder/scheduler type systems have
typically been developed to give instructions to cognitively
impaired people. In general they are based on hand held devices to
deliver messages in an “open loop manner” [3]. When a reminder
is issued, it is expected that the subject will execute the given task.
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However, in the recovery stage, the subject may start to remember
daily activities and getting repeated reminders may be annoying. A
closed-loop system which can intelligently monitor the functional
activities of the patient and then deliver the messages or reminders
as needed, will eliminate both excessive and unnecessary alerts. In
this paper, we focus on a system that can track patients with
traumatic brain injuries. In particular, the system is intended to
help such patients plan their day and complete each of the daily
tasks that they are supposed to perform in a timely manner. The
system tracks the functional activity of the subject. For this
purpose we integrate fixed wireless home sensors and wearable
wireless sensors. We locate and track the subject with the help of
home sensors. We capture the details of the execution of activities
with a 2-axis wearable wireless accelerometer sensor attached to
the right wrist. The signals recorded by this integrated system are
transferred to a PC in real time for processing. We extract time
domain and frequency domain features for each task and combine
them with Gaussian Mixture Models. We proceed with a majority
voting procedure to achieve high true positive and low false
positive rate while continuously tracking the tasks. In this paper
we focus on execution of early morning daily activities such as
brushing teeth, washing face and shaving.

The paper describes the architecture of the system and its
features, including the additional data acquisition capabilities
required to train and design the system. A schematic diagram of
our system is presented in Fig. 1. In Section 2 we provide details
of our system. Section 3 explains the feature extraction and the
classification strategy. Finally, in section 4 we show experimental
results for 2 subjects.

2. WIRELESS SENSORS AND DATA ACQUISITION

As mentioned above, our system consists of 2 sensor systems. The
first sensor system is a collection of fixed wireless sensors
deployed in a home environment. The second system relies on
wearable sensors which provide data that complements the
information by the first system. In our system, we elected to use
the eNeighbor™ system (eN) that was recently developed by
RedWing Technologies (www.healthsense.com) and is currently
marketed under the name Healthsense™. The eN wireless sensor
network is currently based on the IEEE 802.15.4 wireless standard.
Healthsense will be introducing low-power IEEE 802.11 wireless
sensors for use with the eN system by mid-year. The low-power
802.11 wireless sensors are fully compatible with standard WiFi
networks, which significantly increase the flexibility of the system
to cover an entire building or campus. The system comes with
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several sensors such as motion, bed, chair, and door sensors that
allow us to localize most daily activities. Each sensor
communicates with the base station only in the case of an event.
Therefore, the sensors have long battery lives and can be used at
home without frequent maintenance for long periods of time. In
this study, each event is exported from the system in real time
through the USB port to a PC. The eN gives binary information
about the activities carried out by the individual. The sensors
require peer-to-peer interaction to send data. Furthermore, they do
not provide enough information to recognize activities
unambiguously. Therefore, we use wearable accelerometers
installed on networked wireless embedded systems to get detailed
information about the activity of the patient. We selected the
MICAz mote module developed by Crossbow Technology Inc.
(www.xbow.com). The MICAz is IEEE 802.15.4 compliant. In our
system, we used the MTS-310 multisensor board to record
movement and environmental parameters. The 2-axis
accelerometer signal was digitized with 10bit A/D, sampled with
50Hz and transferred to the PC via MIB-510 serial gateway in
real-time. The reader can find detailed information about this data
acquisition system in [4].

For this particular study, we collected 3 types of data: washing
face, brushing teeth and shaving face from 2 healthy subjects, S1
and S2, with the system described above. The number of available
trials for each task is given in Table 1. In addition to completing
the 3 distinct tasks listed above, the subjects are also asked to do
other types of activities that do not correspond to these 3 tasks.
These can be, for example, changing a towel, arranging items on
the sink, etc. These tasks are categorized as No-Activity. Fig. 2
shows 3 sample signals recorded with the system.

3. FEATURE EXTRACTION AND CLASSIFICATION

After localizing the subject using the eNeighbor system, we
proceed to classify the activity of the subject using the
accelerometer data. Accelerometer signals are increasingly being
used in detection of walking/running activities in energy
expenditure detection [1]. In general, time domain (TD) features
such as mean, root mean square and the number of zero crossings
are widely used. In this study TD features are extracted as well. In
addition, we utilize frequency domain (FD) features. We extend
the feature set with energies in different frequency bands. The
Fourier transform of the accelerometer data is calculated in 128
sample windows for each axis. This window is shifted with 75%
overlap across the signal. For each segment, we calculate the
energy in dyadic frequency bands as indicated in Fig. 3 (a). This
approach has direct connections with Mel-Scale features used in
speech recognition. We specifically believe that these features
contain significant information due to the periodic nature of the
activities on which we are focusing (see Fig. 2). The FD features
are then converted to log scale and combined with TD features
related to the same time segment. This resulting feature

vector, X € R” has a dimension D=16 for each segment.
To classify the wearable accelerometer data, a Gaussian

Tablel. Available Trials

Tasks Subject S1 Subject S2
Brush-Teeth 40 23
Wash-Face 30 13
Shave-Face 40 36
No Activity 5 5
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Fig.1. (a) The data acquisition platform which combines static home and

wearable wireless sensors. (b) The static home sensors. (c) Wearable
wireless sensor kit attached to the right writs.

Mixture Model (GMM) based system is used as indicated in Fig.
3(b). GMM is widely used in continuous classification of EMG
signals for prosthetic control and speaker identification problems
due to their robustness and lower computational complexity [5,6].
A GMM probability density function (pdf), is defined as a
weighted combination of N Gaussians.

plxiay =Y wn(x/ u,2,) k=1, ., K (1)

c=1
where ik is the model, X is the feature vector, 77 is the D

dimensional Gaussian pdf component

1
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with mean vector & and covariance matrix X . The W, is the
weight of each component and satisfies

N

dw =1. 3)

c=1

A new observed feature vector is assigned to one of the 4 classes
(K=4) after evaluating the posterior probability of each GMM.

L = argmax(p(x/ 1)) k=1,.,K, 4)
where L is the assigned label. The model order selection plays a
big role in determining the performance in GMM based systems.
While a low number of mixtures can poorly represent the geometry
of the activity in a D dimensional space, a high number of
mixtures generally over fit the data. Therefore, we increased the
number of mixtures from 1 to 6 to find the optimal value.
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Fig.2. Typical recordings obtained from 2 channel accelerometer sensor (Ax and Ay) attached to the right wrist. (a) Brushing-Teeth (b) Washing-Face and

(c) Shaving-Face

The evaluation in (4) gives a class label for each time
segment which corresponds to the continuous classification of
streaming data. However, we noticed that the arm movements
related to each task contain many sub-segments where the activity
is not locally related to the task under execution. In addition,
observation noise affects local error in the classification.

For these reasons, the outputs of all GMMs are post processed
by a Majority Voting (MV) procedure as indicated in Figure 3.
The MV uses W points to decide whether the observation sequence
is related to any of the tasks.

During our experimental study we observed that the true
positive (TP) rate is quite high at the MV output. Although several
time points were used for voting we noticed that the classifier
performed poorly at the beginning and end of each task. However,
we also noticed that the distances between different tasks are
largest when the subjects are in the middle of the tasks. We used
this information to modify the MV to improve the classification
accuracy. We insert a threshold, th; at the input and another
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Fig.3. (a) Dyadic frequency partitioning used to extract FD features. (b)
The proposed classification system

threshold th, at the output of the MV. We remove observations
which have low posterior probability at the input stage of the MV,
that is we use

p(x//”tk)=u(p(x//1k)—th1) %)

where u (p) is the unit step function. Equation (5) filters out those
GMM outputs with low probabilities that occur at the beginning

and end of each task. Now, assume that Vk is the total number of
votes for the k-th GMM in a given window. We eliminate those

votes that are not occurring £/, times within the MV window and

select the surviving vote that occurs with highest frequency.

L =arg max(Vk > th,) k=1, ... K, 6)
This step has enabled us to benefit from those regions where the
distances between classes are maximized. Actually, the steps
described above can be seen as a strategy for extracting the most

unique events related to each task.

4. RESULTS

Let us present the results we have obtained from 2 subjects
executing 4 different tasks in a home setting. We will show the
continuous classification results and the MV outputs with and
without thresholds. For MV, a W =16 sample window (=10sec) is
selected. The thresholds th; and th, were set to 0.5 and 10
respectively. The leave one trial out method is used to estimate the
classification performance. Table 1 represents the continuous
classification results obtained by changing the mixture sizes for 2
subjects. There is a jump in classification performance when the
number of mixtures (NoM) is increased from 1 to 2 for “brushing-
teeth” data. Increasing the NoM provides slight improvements for
subject S1. However, for subject S2 the classification error starts to
increase after 4 mixtures. The classification accuracy
corresponding to no activity (NoAct) continuously drops with
increasing number of mixtures. As indicated before, the NoAct
represents those trials where the subject was free to execute several
activities in the bathroom excluding the 3 main tasks. Therefore,
the features for NoAct have great diversity. Increasing the number
of mixtures clearly drops the classification accuracy. We believe
that the NoAct features fill the whole feature space. With higher
number of mixtures, the system might be entering into an over-
learning stage. The majority voting results also support this
hypothesis. In Table 3 we present the confusion matrix for NoM =
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Table.2. The continuous classification results for 2 subjects

S1
Mix Brush Wash Shave NoAct
1 76.4 82.9 72.7 81.9
2 81.1 88.9 73.5 77.2
3 82.9 89.4 81.2 65.8
4 83.8 87.9 84.9 539
5 84.7 86.5 85.7 53.9
S2
Mix Brush Wash Shave NoAct
1 69.7 82.7 81.4 81.4
2 83.1 82.2 81.1 66.9
3 83.6 82.2 85.4 56.1
4 81.7 80.4 84.6 539
5 82.3 79.9 85.8 50.8

4. As it can be seen from the diagonal the TP positive rate is very
high for the system that has no thresholds in the MV stage.
However, there are also several false positives (FPs). As indicated
previously these errors occur mostly in the transition between
tasks: the hand gestures related to these segments are very similar,
such as grabbing the shaver or tooth brush. Similar problems were
observed in the classification of EMG signals in [5]. The authors
have noticed that the GMM based system performed poorly in the
transitions from one activity to another. Notice also that the
performance of the whole system on NoAct trials is poor when no
threshold used in the MV. In nearly each trial a FP is observed.
Reducing the FP rate was therefore our main concern.

In table 4, we present the results obtained by applying
thresholds to MV. By eliminating low probability or fluctuating
outputs of the GMMs at the input of the MV and then assigning
labels on the votes occurring most often we have nearly eliminated
all FPs. For example, for S1 the 20 FPs for brushing tasks have
been reduced to only one FP. Furthermore, for S2 the Brushing
and Washing tasks are classified with 100% accuracy. For both
subjects the FPs in NoAct regions are completely removed.
However, for each subject, one NoAct trial has been missed.
According to our classification strategy there is no harm in missing
NoAct trials. Also, it is acceptable to assign a real task to both the
task itself, and NoAct.

We specifically examined those trials where a FP occurred in
the MV with thresholds. For example, for S2 the FP rate in the
shaving task is related to the initial stages where the subject is
putting shaving cream on his face. We notice that the circular hand
movements in this region became similar to the brushing task. In
the mid regions of this activity, the system always voted for
shaving. The existence of such subtasks in each activity and the
temporal variability of the task contribute the most to the FP rate

Table 3. The outputs of MV module without thresholds

S1
Mix Brush Wash Shave NoAct
Brush 40 20 0 6
Wash 0 40 0 1
Shave 1 11 30 1
NoAct 0 3 2 5
S2
Mix Brush Wash Shave NoAct
Brush 23 3 0 2
Wash 0 36 1 4
Shave 8 8 13 0
NoAct 2 2 2 5

that we observed. Unfortunately, there is no way to define start and
end points of the subtask and actual activity. When a large time
window is used for MV the local information can be missed. Small
windows are susceptible to local error. We target these challenging
problems in our current studies.

5. CONCLUSION

In this paper we presented a new classification system to
continuously recognize the activities of daily living by using
wearable wireless accelerometer sensors and static wireless home
sensors. The system is based on the GMMs that use TD and FD
features. A majority voting module is implemented at the post-end
of the GMM to increase the classification accuracy. By tuning the
MV with thresholds, we observed a significant decrease in the
number of FPs, which occurred in the recognition of almost every
trial. The same approach may also be a solution for the transition
problems defined in [5]. The computational complexity of the
algorithms is low and can be installed into the wireless sensor kits
in order to develop an intelligent sensor network. We utilized only
accelerometer signal recorded from right wrist. However the
number of sensors can be extended to light, temperature and
microphone inputs which can deliver additional information about
the task. For example a shaving activity implemented with an
electrical shaver may eliminate all hand gestures. In this case a
microphone can pick up the necessary information. Currently the
authors are working on multimodal sensory inputs to enhance the
system for an expanded library of tasks.
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